A Single-Loop Algorithm for Decentralized Bilevel Optimization

Bilevel optimization has gained significant attention in recent years due to its broad applications in machine learning. This paper focuses on bilevel optimization in decentralized networks and proposes a novel single-loop algorithm for solving decentralized bilevel optimization with a strongly convex lower-level problem. Our approach is a fully single-loop method that approximates the hypergradient using … Read more

Relaxation strength for multilinear optimization: McCormick strikes back

We consider linear relaxations for multilinear optimization problems. In a recent paper, Khajavirad proved that the extended flower relaxation is at least as strong as the relaxation of any recursive McCormick linearization (Operations Research Letters 51 (2023) 146-152). In this paper we extend the result to more general linearizations, and present a simpler proof. Moreover, … Read more

Combining Precision Boosting with LP Iterative Refinement for Exact Linear Optimization

This article studies a combination of the two state-of-the-art algorithms for the exact solution of linear programs (LPs) over the rational numbers, i.e., without any roundoff errors or numerical tolerances. By integrating the method of precision boosting inside an LP iterative refinement loop, the combined algorithm is able to leverage the strengths of both methods: … Read more

Robust Regression over Averaged Uncertainty

We propose a new formulation of robust regression by integrating all realizations of the uncertainty set and taking an averaged approach to obtain the optimal solution for the ordinary least squares regression problem. We show that this formulation recovers ridge regression exactly and establishes the missing link between robust optimization and the mean squared error … Read more

The Impact of Symmetry Handling for the Stable Set Problem via Schreier-Sims Cuts

Symmetry handling inequalities (SHIs) are an appealing and popular tool for handling symmetries in integer programming. Despite their practical application, little is known about their interaction with optimization problems. This article focuses on Schreier-Sims (SST) cuts, a recently introduced family of SHIs, and investigate their impact on the computational and polyhedral complexity of optimization problems. … Read more

Higher-Order Newton Methods with Polynomial Work per Iteration

We present generalizations of Newton’s method that incorporate derivatives of an arbitrary order \(d\) but maintain a polynomial dependence on dimension in their cost per iteration. At each step, our \(d^{\text{th}}\)-order method uses semidefinite programming to construct and minimize a sum of squares-convex approximation to the \(d^{\text{th}}\)-order Taylor expansion of the function we wish to … Read more

Cross-Dock Trailer Scheduling with Workforce Constraints: A Dynamic Discretization Discovery Approach

LTL freight carriers operate consolidation networks that utilize cross-docking terminals to facilitate thetransfer of freight between trailers and enhance trailer utilization. This research addresses the problem ofdetermining an optimal schedule for unloading inbound trailers at specific unloading doors using teams ofdock workers. The optimization objective is chosen to ensure that outbound trailers are loaded with … Read more

A proof system for certifying symmetry and optimality reasoning in integer programming

We present a proof system for establishing the correctness of results produced by optimization algorithms, with a focus on mixed-integer programming (MIP). Our system generalizes the seminal work of Bogaerts, Gocht, McCreesh, and Nordström (2022) for binary programs to handle any additional difficulties arising from unbounded and continuous variables, and covers a broad range of … Read more

Price of Anarchy in Paving Matroid Congestion Games

Congestion games allow to model competitive resource sharing in various distributed systems. Pure Nash equilibria, that are stable outcomes of a game, could be far from being socially optimal. Our goal is to identify combinatorial structures that limit the inefficiency of equilibria. This question has been mainly investigated for congestion games defined over networks. Instead, … Read more

Exact Solutions for the NP-hard Wasserstein Barycenter Problem using a Doubly Nonnegative Relaxation and a Splitting Method

The simplified Wasserstein barycenter problem, also known as the cheapest hub problem, consists in selecting one point from each of \(k\) given sets, each set consisting of \(n\) points, with the aim of minimizing the sum of distances to the barycenter of the \(k\) chosen points. This problem is also known as the cheapest hub … Read more