Global and Local Convergence of Line Search Filter Methods for Nonlinear Programming

Line search methods for nonlinear programming using Fletcher and Leyffer’s filter method, which replaces the traditional merit function, are proposed and their global and local convergence properties are analyzed. Previous theoretical work on filter methods has considered trust region algorithms and only the question of global convergence. The presented framework is applied to barrier interior … Read more

Semi-infinite linear programming approaches to semidefinite programming problems

Interior point methods, the traditional methods for the $SDP$, are fairly limited in the sizes of problems they can handle. This paper deals with an $LP$ approach to overcome some of these shortcomings. We begin with a semi-infinite linear programming formulation of the $SDP$ and discuss the issue of its discretization in some detail. We … Read more

A Remarkable Property of the Dynamic Optimization Extremals

A dynamic optimization continuous problem poses the question of what is the optimal magnitude of a choice variable, at each point of time, in a given interval. To tackle such problems, three major approaches are available: dynamic programming; the calculus of variations; and the powerful optimal control approach. At the core of optimal control theory … Read more

Anti-matroids

We introduce an anti-matroid as a family $\cal F$ of subsets of a ground set $E$ for which there exists an assignment of weights to the elements of $E$ such that the greedy algorithm to compute a maximal set (with respect to inclusion) in $\cal F$ of minimum weight finds, instead, the unique maximal set … Read more

On the Primal-Dual Geometry of Level Sets in Linear and Conic Optimization

For a conic optimization problem: minimize cx subject to Ax=b, x \in C, we present a geometric relationship between the maximum norms of the level sets of the primal and the inscribed sizes of the level sets of the dual (or the other way around). CitationMIT Operations Research Center Working PaperArticleDownload View PDF

On the Riemannian Geometry Defined by Self-Concordant Barriers and Interior-Point Methods

We consider the Riemannian geometry defined on a convex set by the Hessian of a self-concordant barrier function, and its associated geodesic curves. These provide guidance for the construction of efficient interior-point methods for optimizing a linear function over the intersection of the set with an affine manifold. We show that algorithms that follow the … Read more

The Robust Shortest Path Problem with Interval Data

Motivated by telecommunication applications, we investigate the shortest path problem on directed acyclic graphs under arc length uncertainties represented as interval numbers. Using a minimax-regret criterion we define and identify robust paths via mixed-integer programming and exploiting interesting structural properties of the problem. CitationBilkent University, Department of Industrial Engineering, Technical Report August 2001ArticleDownload View PDF

Constrained Nonlinear Programming for Volatility Estimation with GARCH Models

The paper proposes a constrained Nonlinear Programming methodology for volatility estimation with GARCH models. These models are usually developed and solved as unconstrained optimization problems whereas they actually fit into nonlinear, nonconvex problems. Computational results on FTSE 100 and S & P 500 indices with up to 1500 data points are given and contrasted to … Read more

Polynomial interior point cutting plane methods

Polynomial cutting plane methods based on the logarithmic barrier function and on the volumetric center are surveyed. These algorithms construct a linear programming relaxation of the feasible region, find an appropriate approximate center of the region, and call a separation oracle at this approximate center to determine whether additional constraints should be added to the … Read more

An Independent Benchmarking of SDP and SOCP Solvers

This work reports the results of evaluating all computer codes submitted to the Seventh DIMACS Implementation Challenge on Semidefinite and Related Optimization Problems. The codes were run on a standard platform and on all the benchmark problems provided by the organizers of the challenge. A total of ten codes were tested on fifty problems in … Read more