Mixed-Integer Programming Techniques for the Connected Max-k-Cut Problem

We consider an extended version of the classical Max-k-Cut problem in which we additionally require that the parts of the graph partition are connected. For this problem we study two alternative mixed-integer linear formulations and review existing as well as develop new branch-and-cut techniques like cuts, branching rules, propagation, primal heuristics, and symmetry breaking. The … Read more

Model and exact solution for a two-echelon inventory routing problem

The classic version of the Inventory Routing Problem considers a system with one supplier that manages the stock level of a set of customers. The supplier defines when and how much products to supply and how to combine customers in routes while minimizing storage and transportation costs. We present a new version of this problem … Read more

The SCIP Optimization Suite 6.0

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion … Read more

New facets for the consecutive ones polytope

A 0/1 matrix has the Consecutive Ones Property if a permutation of its columns exists such that the ones appear consecutively in each row. In many applications, one has to find a matrix having the consecutive ones property and optimizing a linear objective function. For this problem, literature proposes, among other approaches, an Integer Linear … Read more

Benders Decomposition for Very Large Scale Partial Set Covering and Maximal Covering Problems

Covering problems constitute an important family of facility location problems. This paper intro- duces a new exact algorithm for two important members of this family: i) the maximal covering location problem, which requires finding a subset of facilities that maximizes the amount of demand covered while respecting a budget constraint on the cost of the … Read more

Computing the Spark: Mixed-Integer Programming for the (Vector) Matroid Girth Problem

We investigate the NP-hard problem of computing the spark of a matrix (i.e., the smallest number of linearly dependent columns), a key parameter in compressed sensing and sparse signal recovery. To that end, we identify polynomially solvable special cases, gather upper and lower bounding procedures, and propose several exact (mixed-)integer programming models and linear programming … Read more

A Branch-and-Benders-Cut Algorithm for the Road Restoration Crew Scheduling and Routing Problem

Extreme events such as disasters cause partial or total disruption of basic services such as water, energy, communication and transportation. In particular, roads can be damaged or blocked by debris, thereby obstructing access to certain affected areas. Thus, restoration of the damaged roads is necessary to evacuate victims and distribute emergency commodities to relief centers … Read more

The SCIP Optimization Suite 5.0

This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over … Read more

Parallel Solvers for Mixed Integer Linear Optimization

In this article, we provide an overview of the current state of the art with respect to solution of mixed integer linear optimization problems (MILPS) in parallel. Sequential algorithms for solving MILPs have improved substantially in the last two decades and commercial MILP solvers are now considered effective off-the-shelf tools for optimization. Although concerted development … Read more

Polytopes Associated with Symmetry Handling

This paper investigates a polyhedral approach to handle symmetries in mixed-binary programs. We study symretopes, i.e., the convex hulls of all binary vectors that are lexicographically maximal in their orbit with respect to the symmetry group. These polytopes turn out to be quite complex. For practical use, we therefore develop an integer programming formulation with … Read more