Scalable Algorithms for the Sparse Ridge Regression

Sparse regression and variable selection for large-scale data have been rapidly developed in the past decades. This work focuses on sparse ridge regression, which enforces the sparsity by use of the L0 norm. We first prove that the continuous relaxation of the mixed integer second order conic (MISOC) reformulation using perspective formulation is equivalent to … Read more

A Sigmoidal Approximation for Chance-constrained Nonlinear Programs

We propose a sigmoidal approximation (SigVaR) for the value-at-risk (VaR) and we use this approximation to tackle nonlinear programming problems (NLPs) with chance constraints. We prove that the approximation is conservative and that the level of conservatism can be made arbitrarily small for limiting parameter values. The SigVar approximation brings computational benefits over exact mixed-integer … Read more

Integrated Generator Maintenance and Operations Scheduling under Uncertain Failure Times

Planning maintenances and operations is an important concern in power systems. Although optimization based joint maintenance and operations scheduling is studied in the literature, sudden disruptions due to random generator failures are not considered. In this paper we propose a stochastic mixed-integer programming approach for integrated condition-based maintenance and operations scheduling problem for a fleet … Read more

Second-order cone programming formulation for two player zero-sum game with chance constraints

We consider a two player finite strategic zero-sum game where each player has stochastic linear constraints. We formulate the stochastic constraints of each player as chance constraints. We show the existence of a saddle point equilibrium if the row vectors of the random matrices, defining the stochastic constraints of each player, are elliptically symmetric distributed … Read more

On deterministic reformulations of distributionally robust joint chance constrained optimization problems

A joint chance constrained optimization problem involves multiple uncertain constraints, i.e., constraints with stochastic parameters, that are jointly required to be satisfied with probability exceeding a prespecified threshold. In a distributionally robust joint chance constrained optimization problem (DRCCP), the joint chance constraint is required to hold for all probability distributions of the stochastic parameters from … Read more

Ambiguous Risk Constraints with Moment and Unimodality Information

Optimization problems face random constraint violations when uncertainty arises in constraint parameters. Effective ways of controlling such violations include risk constraints, e.g., chance constraints and conditional Value-at-Risk (CVaR) constraints. This paper studies these two types of risk constraints when the probability distribution of the uncertain parameters is ambiguous. In particular, we assume that the distributional … Read more

A Sequential Algorithm for Solving Nonlinear Optimization Problems with Chance Constraints

An algorithm is presented for solving nonlinear optimization problems with chance constraints, i.e., those in which a constraint involving an uncertain parameter must be satisfied with at least a minimum probability. In particular, the algorithm is designed to solve cardinality-constrained nonlinear optimization problems that arise in sample average approximations of chance-constrained problems, as well as … Read more

Exact Algorithms for the Chance-Constrained Vehicle Routing Problem

We study the chance-constrained vehicle routing problem (CCVRP), a version of the vehicle routing problem (VRP) with stochastic demands, where a limit is imposed on the probability that each vehicle’s capacity is exceeded. A distinguishing feature of our proposed methodologies is that they allow correlation between random demands, whereas nearly all existing exact methods for … Read more

A Polyhedral Study on Chance Constrained Program with Random Right-Hand Side

The essential structure of the mixed–integer programming formulation for chance–constrained program (CCP) is the intersection of multiple mixing sets with a $0-1$ knapsack. To improve our computational capacity on CCP, an underlying substructure, the (single) mixing set with a $0-1$ knapsack, has received substantial attentions recently. In this study, we consider a CCP problem with … Read more

On quantile cuts and their closure for chance constrained optimization problems

A chance constrained optimization problem over a finite distribution involves a set of scenario constraints from which a small subset can be violated. We consider the setting where all scenario constraints are mixed-integer convex. Existing works typically consider a mixed integer nonlinear programming (MINLP) formulation of this problem by introducing binary variables to indicate which … Read more