Inexact Coordinate Descent: Complexity and Preconditioning

In this paper we consider the problem of minimizing a convex function using a randomized block coordinate descent method. One of the key steps at each iteration of the algorithm is determining the update to a block of variables. Existing algorithms assume that in order to compute the update, a particular subproblem is solved exactly. … Read more

Efficient tridiagonal preconditioner for the matrix-free truncated Newton method

In this report, we study an efficient tridiagonal preconditioner, based on numerical differentiation, applied to the matrix-free truncated Newton method for unconstrained optimization. It is proved that this preconditioner is positive definite for many practical problems. The efficiency of the resulting matrix-free truncated Newton method is demonstrated by results of extensive numerical experiments. CitationTechnical Report … Read more

Minimal Residual Methods for Complex Symmetric, Skew Symmetric, and Skew Hermitian Systems

While there is no lack of efficient Krylov subspace solvers for Hermitian systems, there are few for complex symmetric, skew symmetric, or skew Hermitian systems, which are increasingly important in modern applications including quantum dynamics, electromagnetics, and power systems. For a large consistent complex symmetric system, one may apply a non-Hermitian Krylov subspace method disregarding … Read more

On the connection between the conjugate gradient method and quasi-Newton methods on quadratic problems

It is well known that the conjugate gradient method and a quasi-Newton method, using any well-defined update matrix from the one-parameter Broyden family of updates, produce identical iterates on a quadratic problem with positive-definite Hessian. This equivalence does not hold for any quasi-Newton method. We define precisely the conditions on the update matrix in the … Read more

ALGORITHM & DOCUMENTATION: MINRES-QLP for Singular Symmetric and Hermitian Linear Equations and Least-Squares Problems

We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite … Read more

Linearizing the Method of Conjugate Gradients

The method of conjugate gradients (CG) is widely used for the iterative solution of large sparse systems of equations $Ax=b$, where $A\in\Re^{n\times n}$ is symmetric positive definite. Let $x_k$ denote the $k$–th iterate of CG. In this paper we obtain an expression for $J_k$, the Jacobian matrix of $x_k$ with respect to $b$. We use … Read more

CONJUGATE GRADIENT WITH SUBSPACE OPTIMIZATION

In this paper we present a variant of the conjugate gradient (CG) algorithm in which we invoke a subspace minimization subproblem on each iteration. We call this algorithm CGSO for “conjugate gradient with subspace optimization”. It is related to earlier work by Nemirovsky and Yudin. We apply the algorithm to solve unconstrained strictly convex problems. … Read more

Conjugate gradient methods based on secant conditions that generate descent search directions for unconstrained optimization

Conjugate gradient methods have been paid attention to, because they can be directly applied to large-scale unconstrained optimization problems. In order to incorporate second order information of the objective function into conjugate gradient methods, Dai and Liao (2001) proposed a conjugate gradient method based on the secant condition. However, their method does not necessarily generate … Read more

A Nonlinear Conjugate Gradient Algorithm with An Optimal Property and An Improved Wolfe Line Search

In this paper, we seek the conjugate gradient direction closest to the direction of the scaled memoryless BFGS method and propose a family of conjugate gradient methods for unconstrained optimization. An improved Wolfe line search is also proposed, which can avoid a numerical drawback of the Wolfe line search and guarantee the global convergence of … Read more

A Perry Descent Conjugate Gradient Method with Restricted Spectrum

A new nonlinear conjugate gradient method, based on Perry’s idea, is presented. And it is shown that its sufficient descent property is independent of any line search and the eigenvalues of $P_{k+1}^{\T}P_{k+1}$ are bounded above, where $P_{k+1}$ is the iteration matrix of the new method. Thus, the global convergence is proven by the spectral analysis … Read more