Rectangular sets of probability measures

In this paper we consider the notion of rectangularity of a set of probability measures, introduced in Epstein and Schneider (2003), from a somewhat different point of view. We define rectangularity as a property of dynamic decomposition of a distributionally robust stochastic optimization problem and show how it relates to the modern theory of coherent … Read more

Robust constrained shortest path problems under budgeted uncertainty

We study the robust constrained shortest path problem under resource uncertainty. After proving that the problem is \NPhard in the strong sense for arbitrary uncertainty sets, we focus on budgeted uncertainty sets introduced by Bertsimas and Sim (2003) and their extension to variable uncertainty by Poss (2013). We apply classical techniques to show that the … Read more

Information Relaxation Bounds for Infinite Horizon Markov Decision Processes

We consider the information relaxation approach for calculating performance bounds for stochastic dynamic programs (DPs), following Brown, Smith, and Sun (2010). This approach generates performance bounds by solving problems with relaxed nonanticipativity constraints and a penalty that punishes violations of these constraints. In this paper, we study infinite horizon DPs with discounted costs and consider … Read more

The Multi-Band Robust Knapsack Problem — A Dynamic Programming Approach —

In this paper, we consider the multi-band robust knapsack problem which generalizes the Γ-robust knapsack problem by subdividing the single deviation band into several smaller bands. We state a compact ILP formulation and develop two dynamic programming algorithms based on the presented model where the first has a complexity linear in the number of items … Read more

Robust Data-Driven Dynamic Programming

In stochastic optimal control the distribution of the exogenous noise is typically unknown and must be inferred from limited data before dynamic programming (DP)-based solution schemes can be applied. If the conditional expectations in the DP recursions are estimated via kernel regression, however, the historical sample paths enter the solution procedure directly as they determine … Read more

Information Relaxations, Duality, and Convex Dynamic Programs

We consider the information relaxation approach for calculating performance bounds for stochastic dynamic programs (DPs), following Brown, Smith, and Sun (2010). This approach generates performance bounds by solving problems with relaxed nonanticipativity constraints and a penalty that punishes violations of these nonanticipativity constraints. In this paper, we study DPs that have a convex structure and … Read more

Optimization Methods for Disease Prevention and Epidemic Control

This paper investigates problems of disease prevention and epidemic control (DPEC), in which we optimize two sets of decisions: (i) vaccinating individuals and (ii) closing locations, given respective budgets with the goal of minimizing the expected number of infected individuals after intervention. The spread of diseases is inherently stochastic due to the uncertainty about disease … Read more

An exact tree projection algorithm for wavelets

We propose a dynamic programming algorithm for projection onto wavelet tree structures. In contrast to other recently proposed algorithms which only give approximate tree projections for a given sparsity, our algorithm is guaranteed to calculate the projection exactly. We also prove that our algorithm has O(Nk) complexity, where N is the signal dimension and k … Read more

Time (in)consistency of multistage distributionally robust inventory models with moment constraints

Recently, there has been a growing interest in developing inventory control policies which are robust to model misspecification. One approach is to posit that nature selects a worst-case distribution for any relevant stochastic primitives from some pre-specified family. Several communities have observed that a subtle phenomena known as time inconsistency can arise in this framework. … Read more

Robust combinatorial optimization with cost uncertainty

We present in this paper a new model for robust combinatorial optimization with cost uncertainty that generalizes the classical budgeted uncertainty set. We suppose here that the budget of uncertainty is given by a function of the problem variables, yielding an uncertainty multifunction. The new model is less conservative than the classical model and approximates … Read more