An interior-point method for MPECs based on strictly feasible relaxations

An interior-point method for solving mathematical programs with equilibrium constraints (MPECs) is proposed. At each iteration of the algorithm, a single primal-dual step is computed from each subproblem of a sequence. Each subproblem is defined as a relaxation of the MPEC with a nonempty strictly feasible region. In contrast to previous approaches, the proposed relaxation … Read more

On the Relationship between Bilevel Decomposition Algorithms and Direct Interior-Point Methods

Engineers have been using \emph{bilevel decomposition algorithms} to solve certain nonconvex large-scale optimization problems arising in engineering design projects. These algorithms transform the large-scale problem into a bilevel program with one upper-level problem (the master problem) and several lower-level problems (the subproblems). Unfortunately, there is analytical and numerical evidence that some of these commonly used … Read more

On Implementing Self-Regular Proximity Based Feasible IPMs

Self-regular based interior point methods present a unified novel approach for solving linear optimization and conic optimization problems. So far it was not known if the new Self-Regular IPMs can lead to similar advances in computational practice as shown in the theoretical analysis. In this paper, we present our experiences in developing the software package … Read more

Solving Nonlinear Portfolio Optimization Problems with the Primal-Dual Interior Point Method

Stochastic programming is recognized as a powerful tool to help decision making under uncertainty in financial planning. The deterministic equivalent formulations of these stochastic programs have huge dimensions even for moderate numbers of assets, time stages and scenarios per time stage. So far models treated by mathematical programming approaches have been limited to simple linear … Read more

Fortran subroutines for network flow optimization using an interior point algorithm

We describe FORTRAN subroutines for network flow optimization using an interior point network flow algorithm. We provide FORTRAN and C language drivers, as well as C language functions that, together with the subroutines, make up PDNET (Portugal, Resende, Veiga, and Júdice, 2000). The algorithm is described in detail and its implementation is outlined. Usage of … Read more

An Efficient Interior-Point Method for Convex Multicriteria Optimization Problems

In multicriteria optimization, several objective functions, conflicting with each other, have to be minimized simultaneously. We propose a new efficient method for approximating the solution set of a multiobjective programming problem, where the objective functions involved are arbitary convex functions and the set of feasible points is convex. The method is based on generating warm-start … Read more

Interior Point and Semidefinite Approaches in Combinatorial Optimization

Interior-point methods (IPMs), originally conceived in the context of linear programming have found a variety of applications in integer programming, and combinatorial optimization. This survey presents an up to date account of IPMs in solving NP-hard combinatorial optimization problems to optimality, and also in developing approximation algorithms for some of them. The surveyed approaches include … Read more

Convergence of infeasible-interior-point methods for self-scaled conic programming

We present results on global and polynomial-time convergence of infeasible-interior-point methods for self-scaled conic programming, which includes linear and semidefinite programming. First, we establish global convergence for an algorithm using a wide neighborhood. Next, we prove polynomial complexity for the algorithm with a slightly narrower neighborhood. Both neighborhoods are related to the wide (minus infinity) … Read more

Convergence Analysis of a Long-Step Primal-Dual Infeasible Interior-Point LP Algorithm Based on Iterative Linear Solvers

In this paper, we consider a modified version of a well-known long-step primal-dual infeasible IP algorithm for solving the linear program $\min\{c^T x : Ax=b, \, x \ge 0\}$, $A \in \Re^{m \times n}$, where the search directions are computed by means of an iterative linear solver applied to a preconditioned normal system of equations. … Read more

A limited memory algorithm for inequality constrained minimization

A method for solving inequality constrained minimization problems is described. The algorithm is based on a primal-dual interior point approach, with a line search globalization strategy. A quasi-Newton technique (BFGS) with limited memory storage is used to approximate the second derivatives of the functions. The method is especially intended for solving problems with a large … Read more