Constraint Qualification Failure in Action

This note presents a theoretical analysis of disjunctive constraints featuring unbounded variables. In this framework, classical modeling techniques, including big-M approaches, are not applicable. We introduce a lifted second-order cone formulation of such on/off constraints and discuss related constraint qualification issues. A solution is proposed to avoid solvers’ failure. CitationH. L. Hijazi and L.Liberti “Constraint … Read more

How to Convexify the Intersection of a Second Order Cone and a Nonconvex Quadratic

A recent series of papers has examined the extension of disjunctive-programming techniques to mixed-integer second-order-cone programming. For example, it has been shown—by several authors using different techniques—that the convex hull of the intersection of an ellipsoid, $\E$, and a split disjunction, $(l – x_j)(x_j – u) \le 0$ with $l < u$, equals the intersection ... Read more

Mathematical Programming techniques in Water Network Optimization

In this article we survey mathematical programming approaches to problems in the field of water network optimization. Predominant in the literature are two different, but related problem classes. One can be described by the notion of network design, while the other is more aptly termed by network operation. The basic underlying model in both cases … Read more

Cutting Planes for RLT Relaxations of Mixed 0-1 Polynomial Programs

The Reformulation-Linearization Technique (RLT), due to Sherali and Adams, can be used to construct hierarchies of linear programming relaxations of mixed 0-1 polynomial programs. As one moves up the hierarchy, the relaxations grow stronger, but the number of variables increases exponentially. We present a procedure that generates cutting planes at any given level of the … Read more

Mathematical Programming: Turing completeness and applications to software analysis

Mathematical Programming is Turing complete, and can be used as a general-purpose declarative language. We present a new constructive proof of this fact, and showcase its usefulness by discussing an application to finding the hardest input of any given program running on a Minsky Register Machine. We also discuss an application of Mathematical Programming to … Read more

Convex Quadratic Relaxations for Mixed-Integer Nonlinear Programs in Power Systems

This paper presents a set of new convex quadratic relaxations for nonlinear and mixed-integer nonlinear programs arising in power systems. The considered models are motivated by hybrid discrete/continuous applications where existing approximations do not provide optimality guarantees. The new relaxations offer computational efficiency along with minimal optimality gaps, providing an interesting alternative to state-of-the-art semi-definite … Read more

Polynomial solvability of variants of the trust-region subproblem

The trust region subproblem concerns the minimization of a general quadratic over the unit ball in R^n. Extensions to this problem are of interest because of applications to, for example, combinatorial optimization. However the extension obtained by adding an arbitrary family of linear side constraints is NP-hard. In this paper we consider variants of the … Read more

Cutting-planes for optimization of convex functions over nonconvex sets

Motivated by mixed-integer, nonlinear optimization problems, we derive linear inequality characterizations for sets of the form conv{(x, q ) \in R^d × R : q \in Q(x), x \in R^d – int(P )} where Q is convex and differentiable and P \subset R^d . We show that in several cases our characterization leads to polynomial-time … Read more

Transmission Expansion Planning Using an AC Model: Formulations and Possible Relaxations

Transmission expansion planning (TEP) is a rather complicated process which requires extensive studies to determine when, where and how many transmission facilities are needed. A well planned power system will not only enhance the system reliability, but also tend to contribute positively to the overall system operating efficiency. Starting with two mixed-integer nonlinear programming (MINLP) … Read more

Mixed-Integer Nonlinear Optimization

Many optimal decision problems in scientific, engineering, and public sector applications involve both discrete decisions and nonlinear system dynamics that affect the quality of the final design or plan. These decision problems lead to mixed-integer nonlinear programming (MINLP) problems that combine the combinatorial difficulty of optimizing over discrete variable sets with the challenges of handling … Read more