An inexact block-decomposition method for extra large-scale conic semidefinite programming

In this paper, we present an inexact block-decomposition (BD) first-order method for solving standard form conic semidefinite programming (SDP) which avoids computations of exact projections onto the manifold defined by the affine constraints and, as a result, is able to handle extra large SDP instances. The method is based on a two-block reformulation of the … Read more

VERTICES OF SPECTRAHEDRA ARISING FROM THE ELLIPTOPE, THE THETA BODY, AND THEIR RELATIVES

Utilizing dual descriptions of the normal cone of convex optimization problems in conic form, we characterize the vertices of semidefinite representations arising from Lovász theta body, generalizations of the elliptope, and related convex sets. Our results generalize vertex characterizations due to Laurent and Poljak from the 1990’s. Our approach also leads us to nice characterizations … Read more

Semidefinite programming and eigenvalue bounds for the graph partition problem

The graph partition problem is the problem of partitioning the vertex set of a graph into a fixed number of sets of given sizes such that the total weight of edges joining different sets is optimized. In this paper we simplify a known matrix-lifting semidefinite programming relaxation of the graph partition problem for several classes … Read more

Application of the Moment-SOS Approach to Global Optimization of the OPF Problem

Finding a global solution to the optimal power flow (OPF) problem is difficult due to its nonconvexity. A convex relaxation in the form of semidefinite programming (SDP) has attracted much attention lately as it yields a global solution in several practical cases. However, it does not in all cases, and such cases have been documented … Read more

A Two-Variable Approach to the Two-Trust-Region Subproblem

The trust-region subproblem minimizes a general quadratic function over an ellipsoid and can be solved in polynomial time using a semidefinite-programming (SDP) relaxation. Intersecting the feasible set with a second ellipsoid results in the two-trust-region subproblem (TTRS). Even though TTRS can also be solved in polynomial-time, existing algorithms do not use SDP. In this paper, … Read more

Fast implementation for semidefinite programs with positive matrix completion

Solving semidefinite programs (SDP) in a short time is the key to managing various mathematical optimization problems in practical time. The matrix-completion primal-dual interior-point method (MC-PDIPM) extracts a structural sparsity of input SDP by factorizing the variable matrices, and it shrinks the computation time. In this paper, we propose a new factorization based on the … Read more

Semidefinite Programming Based Preconditioning for More Robust Near-Separable Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) under the separability assumption can provably be solved efficiently, even in the presence of noise, and has been shown to be a powerful technique in document classification and hyperspectral unmixing. This problem is referred to as near-separable NMF and requires that there exists a cone spanned by a small subset of … Read more

Conic Geometric Programming

We introduce and study conic geometric programs (CGPs), which are convex optimization problems that unify geometric programs (GPs) and conic optimization problems such as linear programs (LPs) and semidefinite programs (SDPs). A CGP consists of a linear objective function that is to be minimized subject to affine constraints, convex conic constraints, and upper bound constraints … Read more

Stability of Polynomial Differential Equations: Complexity and Converse Lyapunov Questions

We consider polynomial differential equations and make a number of contributions to the questions of (i) complexity of deciding stability, (ii) existence of polynomial Lyapunov functions, and (iii) existence of sum of squares (sos) Lyapunov functions. (i) We show that deciding local or global asymptotic stability of cubic vector fields is strongly NP-hard. Simple variations … Read more

A Polynomial Time Constraint-Reduced Algorithm for Semidefinite Optimization Problems, with Convergence Proofs

We present an infeasible primal-dual interior point method for semidefinite optimization problems, making use of constraint reduction. We show that the algorithm is globally convergent and has polynomial complexity, the first such complexity result for primal-dual constraint reduction algorithms for any class of problems. Our algorithm is a modification of one with no constraint reduction … Read more