Linear optimization over homogeneous matrix cones

A convex cone is homogeneous if its automorphism group acts transitively on the interior of the cone, i.e., for every pair of points in the interior of the cone, there exists a cone automorphism that maps one point to the other. Cones that are homogeneous and self-dual are called symmetric. The symmetric cones include the … Read more

A Strengthened SDP Relaxation for Quadratic Optimization Over the Stiefel Manifold

We study semidefinite programming (SDP) relaxations for the NP-hard problem of globally optimizing a quadratic function over the Stiefel manifold. We introduce a strengthened relaxation based on two recent ideas in the literature: (i) a tailored SDP for objectives with a block-diagonal Hessian; (ii) and the use of the Kronecker matrix product to construct SDP relaxations. Using synthetic instances on … Read more

The exact worst-case convergence rate of the alternating direction method of multipliers

Recently, semidefinite programming performance estimation has been employed as a strong tool for the worst-case performance analysis of first order methods. In this paper, we derive new non-ergodic convergence rates for the alternating direction method of multipliers (ADMM) by using performance estimation. We give some examples which show the exactness of the given bounds. We … Read more

Partitioning through projections: strong SDP bounds for large graph partition problems

The graph partition problem (GPP) aims at clustering the vertex set of a graph into a fixed number of disjoint subsets of given sizes such that the sum of weights of edges joining different sets is minimized. This paper investigates the quality of doubly nonnegative (DNN) relaxations, i.e., relaxations having matrix variables that are both … Read more

Solving Two-Trust-Region Subproblems using Semidefinite Optimization with Eigenvector Branching

Semidefinite programming (SDP) problems typically utilize the constraint that X-xx’ is PSD to obtain a convex relaxation of the condition X=xx’, where x is an n-vector. In this paper we consider a new hyperplane branching method for SDP based on using an eigenvector of X-xx’. This branching technique is related to previous work of Saxeena, … Read more

A barrier Lagrangian dual method for multi-stage stochastic convex semidefinite optimization

In this paper, we present a polynomial-time barrier algorithm for solving multi-stage stochastic convex semidefinite optimization based on the Lagrangian dual method which relaxes the nonanticipativity constraints. We show that the barrier Lagrangian dual functions for our setting form self-concordant families with respect to barrier parameters. We also use the barrier function method to improve … Read more

An effective version of Schmüdgen’s Positivstellensatz for the hypercube

Let S be a compact semialgebraic set and let f be a polynomial nonnegative on S. Schmüdgen’s Positivstellensatz then states that for any \eta>0, the nonnegativity of f+\eta on S can be certified by expressing f+\eta as a conic combination of products of the polynomials that occur in the inequalities defining S, where the coefficients … Read more

Revisiting semidefinite programming approaches to options pricing: complexity and computational perspectives

In this paper we consider the problem of finding bounds on the prices of options depending on multiple assets without assuming any underlying model on the price dynamics, but only the absence of arbitrage opportunities. We formulate this as a generalized moment problem and utilize the well-known Moment-Sum-of-Squares (SOS) hierarchy of Lasserre to obtain bounds … Read more

Ellipsoidal Classification via Semidefinite Programming

Separating two finite sets of points in a Euclidean space is a fundamental problem in classification. Customarily linear separation is used, but nonlinear separators such as spheres have been shown to have better performances in some tasks, such as edge detection in images. We exploit the relationships between the more general version of the spherical … Read more

A Sum of Squares Characterization of Perfect Graphs

We present an algebraic characterization of perfect graphs, i.e., graphs for which the clique number and the chromatic number coincide for every induced subgraph. We show that a graph is perfect if and only if certain nonnegative polynomials associated with the graph are sums of squares. As a byproduct, we obtain several infinite families of … Read more