Line search methods with variable sample size for unconstrained optimization

Minimization of unconstrained objective function in the form of mathematical expectation is considered. Sample Average Approximation – SAA method transforms the expectation objective function into a real-valued deterministic function using large sample and thus deals with deterministic function minimization. The main drawback of this approach is its cost. A large sample of the random variable … Read more

Optimal Distributed Online Prediction using Mini-Batches

Online prediction methods are typically presented as serial algorithms running on a single processor. However, in the age of web-scale prediction problems, it is increasingly common to encounter situations where a single processor cannot keep up with the high rate at which inputs arrive. In this work we present the distributed mini-batch algorithm, a method … Read more

Optimal adaptive control of cascading power grid failures

We describe experiments with parallel algorithms for computing adaptive controls for attenuating power grid cascading failures. Citation Columbia University, 2010 Article Download View Optimal adaptive control of cascading power grid failures

Convex approximations in stochastic programming by semidefinite programming

The following question arises in stochastic programming: how can one approximate a noisy convex function with a convex quadratic function that is optimal in some sense. Using several approaches for constructing convex approximations we present some optimization models yielding convex quadratic regressions that are optimal approximations in $L_1$, $L_\infty$ and $L_2$ norm. Extensive numerical experiments … Read more

On the Power of Robust Solutions in Two-Stage Stochastic and Adaptive Optimization Problems

We consider a two-stage mixed integer stochastic optimization problem and show that a static robust solution is a good approximation to the fully-adaptable two-stage solution for the stochastic problem under fairly general assumptions on the uncertainty set and the probability distribution. In particular, we show that if the right hand side of the constraints is … Read more

Primal and dual linear decision rules in stochastic and robust optimization

Linear stochastic programming provides a flexible toolbox for analyzing real-life decision situations, but it can become computationally cumbersome when recourse decisions are involved. The latter are usually modelled as decision rules, i.e., functions of the uncertain problem data. It has recently been argued that stochastic programs can quite generally be made tractable by restricting the … Read more

Convergence of stochastic average approximation for stochastic optimization problems with mixed expectation and per-scenario constraints

We present a framework for ensuring convergence of sample average approximations to stochastic optimization problems that include expectation constraints in addition to per-scenario constraints. Citation Preprint ANL/MCS 1562-1108 Article Download View Convergence of stochastic average approximation for stochastic optimization problems with mixed expectation and per-scenario constraints

An information-based approximation scheme for stochastic optimization problems in continuous time

Dynamic stochastic optimization problems with a large (possibly infinite) number of decision stages and high-dimensional state vector are inherently difficult to solve. In fact, scenario tree based algorithms are unsuitable for problems with many stages, while dynamic programming type techniques are unsuitable for problems with many state variables. This article proposes a stage aggregation scheme … Read more

Formulation and solution strategies for nonparametric nonlinear stochastic programs, with an application in finance

We consider a class of stochastic programming models where the uncertainty is classically represented using parametric distributions families. The parameters are then usually estimated together with the optimal value of the problem. However, misspecification of the underlying random variables often leads to irrealistic results when little is known about their true distributions. We propose to … Read more

On Rates of Convergence for Stochastic Optimization Problems Under Non-I.I.D. Sampling

In this paper we discuss the issue of solving stochastic optimization problems by means of sample average approximations. Our focus is on rates of convergence of estimators of optimal solutions and optimal values with respect to the sample size. This is a well-studied problem in case the samples are independent and identically distributed (i.e., when … Read more