Parallel distributed-memory simplex for large-scale stochastic LP problems

We present a parallelization of the revised simplex method for large extensive forms of two-stage stochastic linear programming (LP) problems. These problems have been considered too large to solve with the simplex method; instead, decomposition approaches based on Benders decomposition or, more recently, interior-point methods are generally used. However, these approaches do not provide optimal … Read more

Stochastic first order methods in smooth convex optimization.

In this paper, we are interested in the development of efficient first-order methods for convex optimization problems in the simultaneous presence of smoothness of the objective function and stochasticity in the first-order information. First, we consider the Stochastic Primal Gradient method, which is nothing else but the Mirror Descent SA method applied to a smooth … Read more

Time-inconsistent multistage stochastic programs: martingale bounds

Abstract. It is well known that multistage programs, which maximize expectation or expected utility, allow a dynamic programming formulation, and that other objectives destroy the dynamic programming character of the problem. This paper considers a risk measure at the final stage of a multistage stochastic program. Although these problems are not time consistent, it is … Read more

Robust inversion, dimensionality reduction, and randomized sampling

We consider a class of inverse problems in which the forward model is the solution operator to linear ODEs or PDEs. This class admits several dimensionality-reduction techniques based on data averaging or sampling, which are especially useful for large-scale problems. We survey these approaches and their connection to stochastic optimization. The data-averaging approach is only … Read more

Line search methods with variable sample size for unconstrained optimization

Minimization of unconstrained objective function in the form of mathematical expectation is considered. Sample Average Approximation – SAA method transforms the expectation objective function into a real-valued deterministic function using large sample and thus deals with deterministic function minimization. The main drawback of this approach is its cost. A large sample of the random variable … Read more

Optimal Distributed Online Prediction using Mini-Batches

Online prediction methods are typically presented as serial algorithms running on a single processor. However, in the age of web-scale prediction problems, it is increasingly common to encounter situations where a single processor cannot keep up with the high rate at which inputs arrive. In this work we present the distributed mini-batch algorithm, a method … Read more

Convex approximations in stochastic programming by semidefinite programming

The following question arises in stochastic programming: how can one approximate a noisy convex function with a convex quadratic function that is optimal in some sense. Using several approaches for constructing convex approximations we present some optimization models yielding convex quadratic regressions that are optimal approximations in $L_1$, $L_\infty$ and $L_2$ norm. Extensive numerical experiments … Read more

On the Power of Robust Solutions in Two-Stage Stochastic and Adaptive Optimization Problems

We consider a two-stage mixed integer stochastic optimization problem and show that a static robust solution is a good approximation to the fully-adaptable two-stage solution for the stochastic problem under fairly general assumptions on the uncertainty set and the probability distribution. In particular, we show that if the right hand side of the constraints is … Read more

Primal and dual linear decision rules in stochastic and robust optimization

Linear stochastic programming provides a flexible toolbox for analyzing real-life decision situations, but it can become computationally cumbersome when recourse decisions are involved. The latter are usually modelled as decision rules, i.e., functions of the uncertain problem data. It has recently been argued that stochastic programs can quite generally be made tractable by restricting the … Read more