A New Trust Region Method with Simple Model for Large-Scale Optimization

In this paper a new trust region method with simple model for solving large-scale unconstrained nonlinear optimization problems is proposed. By using the generalized weak quasi-Newton equations, we derive several schemes to determine the appropriate scalar matrix as the Hessian approximation. Under some reasonable conditions and the framework of the trust-region method, the global convergence … Read more

On Solving L-SR1 Trust-Region Subproblems

In this article, we consider solvers for large-scale trust-region subproblems when the quadratic model is defined by a limited-memory symmetric rank-one (L-SR1) quasi-Newton matrix. We propose a solver that exploits the compact representation of L-SR1 matrices. Our approach makes use of both an orthonormal basis for the eigenspace of the L-SR1 matrix and the Sherman- … Read more

Stochastic Optimization using a Trust-Region Method and Random Models

In this paper, we propose and analyze a trust-region model-based algorithm for solving unconstrained stochastic optimization problems. Our framework utilizes random models of an objective function $f(x)$, obtained from stochastic observations of the function or its gradient. Our method also utilizes estimates of function values to gauge progress that is being made. The convergence analysis … Read more

On an adaptive regularization for ill-posed nonlinear systems and its trust-region implementation

In this paper we address the stable numerical solution of nonlinear ill-posed systems by a trust-region method. We show that an appropriate choice of the trust-region radius gives rise to a procedure that has the potential to approach a solution of the unperturbed system. This regularizing property is shown theoretically and validated numerically. CitationDipartimento di … Read more

Copositivity for second-order optimality conditions in general smooth optimization problems

Second-order local optimality conditions involving copositivity of the Hessian of the Lagrangian on the reduced linearization cone have the advantage that there is only a small gap between sufficient (the Hessian is strictly copositive) and necessary (the Hessian is copositive) conditions. In this respect, this is a proper generalization of convexity of the Lagrangian. We … Read more

A trust-funnel method for nonlinear optimization problems with general nonlinear constraints and its application to derivative-free optimization

A trust-funnel method is proposed for solving nonlinear optimization problems with general nonlinear constraints. It extends the one presented by Gould and Toint (Math. Prog., 122(1):155-196, 2010), originally proposed for equality-constrained optimization problems only, to problems with both equality and inequality constraints and where simple bounds are also considered. As the original one, our method … Read more

Trust-region methods without using derivatives: Worst case complexity and the non-smooth case

Trust-region methods are a broad class of methods for continuous optimization that found application in a variety of problems and contexts. In particular, they have been studied and applied for problems without using derivatives. The analysis of trust-region derivative-free methods has focused on global convergence, and they have been proved to generate a sequence of … Read more

A trust-region method for box-constrained nonlinear semidefinite programs

We propose a trust-region method for nonlinear semidefinite programs with box-constraints. The penalty barrier method can handle this problem, but the size of variable matrices available in practical time is restricted to be less than 500. We develop a trust-region method based on the approach of Coleman and Li (1996) that utilizes the distance to … Read more

A Trust Region Algorithm with a Worst-Case Iteration Complexity of ${\cal O}(\epsilon^{-3/2})$ for Nonconvex Optimization

We propose a trust region algorithm for solving nonconvex smooth optimization problems. For any $\bar\epsilon \in (0,\infty)$, the algorithm requires at most $\mathcal{O}(\epsilon^{-3/2})$ iterations, function evaluations, and derivative evaluations to drive the norm of the gradient of the objective function below any $\epsilon \in (0,\bar\epsilon]$. This improves upon the $\mathcal{O}(\epsilon^{-2})$ bound known to hold for … Read more

How to Convexify the Intersection of a Second Order Cone and a Nonconvex Quadratic

A recent series of papers has examined the extension of disjunctive-programming techniques to mixed-integer second-order-cone programming. For example, it has been shown—by several authors using different techniques—that the convex hull of the intersection of an ellipsoid, $\E$, and a split disjunction, $(l – x_j)(x_j – u) \le 0$ with $l < u$, equals the intersection ... Read more