Copositivity for second-order optimality conditions in general smooth optimization problems

Second-order local optimality conditions involving copositivity of the Hessian of the Lagrangian on the reduced linearization cone have the advantage that there is only a small gap between sufficient (the Hessian is strictly copositive) and necessary (the Hessian is copositive) conditions. In this respect, this is a proper generalization of convexity of the Lagrangian. We … Read more

A trust-funnel method for nonlinear optimization problems with general nonlinear constraints and its application to derivative-free optimization

A trust-funnel method is proposed for solving nonlinear optimization problems with general nonlinear constraints. It extends the one presented by Gould and Toint (Math. Prog., 122(1):155-196, 2010), originally proposed for equality-constrained optimization problems only, to problems with both equality and inequality constraints and where simple bounds are also considered. As the original one, our method … Read more

Trust-region methods without using derivatives: Worst case complexity and the non-smooth case

Trust-region methods are a broad class of methods for continuous optimization that found application in a variety of problems and contexts. In particular, they have been studied and applied for problems without using derivatives. The analysis of trust-region derivative-free methods has focused on global convergence, and they have been proved to generate a sequence of … Read more

A trust-region method for box-constrained nonlinear semidefinite programs

We propose a trust-region method for nonlinear semidefinite programs with box-constraints. The penalty barrier method can handle this problem, but the size of variable matrices available in practical time is restricted to be less than 500. We develop a trust-region method based on the approach of Coleman and Li (1996) that utilizes the distance to … Read more

A Trust Region Algorithm with a Worst-Case Iteration Complexity of ${\cal O}(\epsilon^{-3/2})$ for Nonconvex Optimization

We propose a trust region algorithm for solving nonconvex smooth optimization problems. For any $\bar\epsilon \in (0,\infty)$, the algorithm requires at most $\mathcal{O}(\epsilon^{-3/2})$ iterations, function evaluations, and derivative evaluations to drive the norm of the gradient of the objective function below any $\epsilon \in (0,\bar\epsilon]$. This improves upon the $\mathcal{O}(\epsilon^{-2})$ bound known to hold for … Read more

How to Convexify the Intersection of a Second Order Cone and a Nonconvex Quadratic

A recent series of papers has examined the extension of disjunctive-programming techniques to mixed-integer second-order-cone programming. For example, it has been shown—by several authors using different techniques—that the convex hull of the intersection of an ellipsoid, $\E$, and a split disjunction, $(l – x_j)(x_j – u) \le 0$ with $l < u$, equals the intersection ... Read more

A globally convergent trust-region algorithm for unconstrained derivative-free optimization

In this work we explicit a derivative-free trust-region algorithm for unconstrained optimization based on the paper (Computational Optimization and Applications 53: 527-555, 2012) proposed by Powell. The objective function is approximated by quadratic models obtained by polynomial interpolation. The number of points of the interpolation set is fixed. In each iteration only one interpolation point … Read more

A derivative-free trust-funnel method for equality-constrained nonlinear optimization

In this work, we look into new derivative-free methods to solve equality-constrained optimization problems. Of particular interest, are the trust-region techniques, which have been investigated for the unconstrained and bound-constrained cases. For solving equality-constrained optimization problems, we introduce a derivative-free adaptation of the trust-funnel method combined with a self-correcting geometry scheme and present some encouraging … Read more

A Trust Region Method for the Solution of the Surrogate Dual in Integer Programming

We propose an algorithm for solving the surrogate dual of a mixed integer program. The algorithm uses a trust region method based on a piecewise affine model of the dual surrogate value function. A new and much more flexible way of updating bounds on the surrogate dual’s value is proposed, which numerical experiments prove to … Read more

An Interior-Point Trust-Funnel Algorithm for Nonlinear Optimization

We present an interior-point trust-funnel algorithm for solving large-scale nonlinear optimization problems. The method is based on an approach proposed by Gould and Toint (Math Prog 122(1):155–196, 2010) that focused on solving equality constrained problems. Our method is similar in that it achieves global convergence guarantees by combining a trust-region methodology with a funnel mechanism, … Read more