Combining segment generation with direct step-and-shoot optimization in intensity-modulated radiation therapy

A method for generating a sequence of intensity-modulated radiation therapy step-and-shoot plans with increasing number of segments is presented. The objectives are to generate high-quality plans with few, large and regular segments, and to make the planning process more intuitive. The proposed method combines segment generation with direct step-and-shoot optimization, where leaf positions and segment … Read more

Sufficient and Necessary Conditions for Semidefinite Representability of Convex Hulls and Sets

The article proves sufficient conditions and necessary conditions for SDP representability of convex sets and convex hulls by proposing a new approach to construct SDP representations. The contributions of this paper are: (i) For bounded SDP representable sets $W_1,\cdots,W_m$, we give an explicit construction of an SDP representation for $conv(\cup_{k=1}^mW_k)$. This provides a technique for … Read more

A Numerical Algorithm for Block-Diagonal Decomposition of Matrix *-Algebras, Part I: Proposed Approach and Application to Semidefinite Programming

Motivated by recent interest in group-symmetry in semidefinite programming, we propose a numerical method for finding a finest simultaneous block-diagonalization of a finite number of matrices, or equivalently the irreducible decomposition of the generated matrix *-algebra. The method is composed of numerical-linear algebraic computations such as eigenvalue computation, and automatically makes full use of the … Read more

Bracketing an Optima in Univariate Optimization

In this article, we consider some problems of bracketing an optimum point for a real-valued, single variable function. We show that, no method, satisfying certain assumptions and requiring a bounded number of function evaluations, can exist to bracket the minimum point of a unimodal function. A similar result is given also for the problem of … Read more

Regularization methods for semidefinite programming

This paper studies an alternative technique to interior point methods and nonlinear methods for semidefinite programming (SDP). The approach based on classical quadratic regularizations leads to an algorithm, generalizing a recent method called “boundary point method”. We study the theoretical properties of this algorithm and we show that in practice it behaves very well on … Read more

Properties of a Cutting Plane Method for Semidefinite Programming

We analyze the properties of an interior point cutting plane algorithm that is based on a semi-infinite linear formulation of the dual semidefinite program. The cutting plane algorithm approximately solves a linear relaxation of the dual semidefinite program in every iteration and relies on a separation oracle that returns linear cutting planes. We show that … Read more

A multilevel algorithm for solving the trust-region subproblem

We present a multilevel numerical algorithm for the exact solution of the Euclidean trust-region subproblem. This particular subproblem typically arises when optimizing a nonlinear (possibly non-convex) objective function whose variables are discretized continuous functions, in which case the different levels of discretization provide a natural multilevel context. The trust-region problem is considered at the highest … Read more

Fast Computation of Optimal Contact Forces

We consider the problem of computing the smallest contact forces, with point-contact friction model, that can hold an object in equilibrium against a known external applied force and torque. It is known that the force optimization problem (FOP) can be formulated as a semidefinite programming problem (SDP), or a second-order cone problem (SOCP), and so … Read more