Accelerated Schemes For A Class of Variational Inequalities

We propose a novel method, namely the accelerated mirror-prox (AMP) method, for computing the weak solutions of a class of deterministic and stochastic monotone variational inequalities (VI). The main idea of this algorithm is to incorporate a multi-step acceleration scheme into the mirror-prox method. For both deterministic and stochastic VIs, the developed AMP method computes … Read more

A Characterization of Irreducible Infeasible Subsystems in Flow Networks

Infeasible network flow problems with supplies and demands can be characterized via violated cut-inequalities of the classical Gale-Hoffman theorem. Written as a linear program, irreducible infeasible subsystems (IISs) provide a different means of infeasibility characterization. In this article, we answer a question left open in the literature, by showing a one-to-one correspondence between IISs and … Read more

Asynchronous Stochastic Coordinate Descent: Parallelism and Convergence Properties

We describe an asynchronous parallel stochastic proximal coordinate descent algorithm for minimizing a composite objective function, which consists of a smooth convex function plus a separable convex function. In contrast to previous analyses, our model of asynchronous computation accounts for the fact that components of the unknown vector may be written by some cores simultaneously … Read more

On solving symmetric systems of linear equations in an unnormalized Krylov subspace framework

In an unnormalized Krylov subspace framework for solving symmetric systems of linear equations, the orthogonal vectors that are generated by a Lanczos process are not necessarily on the form of gradients. Associating each orthogonal vector with a triple, and using only the three-term recurrences of the triples, we give conditions on whether a symmetric system … Read more

Relaxing nonconvex quadratic functions by multiple adaptive diagonal perturbations

The current bottleneck of globally solving mixed-integer (nonconvex) quadratically constrained problem (MIQCP) is still to construct strong but computationally cheap convex relaxations, especially when dense quadratic functions are present. We pro- pose a cutting surface procedure based on multiple diagonal perturbations to derive strong convex quadratic relaxations for nonconvex quadratic problem with separable constraints. Our … Read more

A modified limited-memory BNS method for unconstrained minimization based on the conjugate directions idea

A modification of the limited-memory variable metric BNS method for large scale unconstrained optimization is proposed, which consist in corrections (derived from the idea of conjugate directions) of the used difference vectors for better satisfaction of previous quasi-Newton conditions. In comparison with [16], where a similar approach is used, correction vectors from more previous iterations … Read more

CBLIB 2014: A benchmark library for conic mixed-integer and continuous optimization

The Conic Benchmark Library (CBLIB 2014) is a collection of more than a hundred conic optimization instances under a free and open license policy. It is the first extensive benchmark library for the advancing field of conic mixed-integer and continuous optimization, which is already supported by all major commercial solvers and spans a wide range … Read more

A globally convergent trust-region algorithm for unconstrained derivative-free optimization

In this work we explicit a derivative-free trust-region algorithm for unconstrained optimization based on the paper (Computational Optimization and Applications 53: 527-555, 2012) proposed by Powell. The objective function is approximated by quadratic models obtained by polynomial interpolation. The number of points of the interpolation set is fixed. In each iteration only one interpolation point … Read more

An Improved Stochastic Optimization Model for Water Supply Pumping Systems in Urban Networks

This study investigates a pump scheduling problem for the collection, transfer and storage of water in water supply systems in urban networks. The objective of this study is to determine a method to minimize the electricity costs associated with pumping operations. To address the dynamic and random nature of water demand, we propose a two-stage … Read more

Derivative-free Methods for Mixed-Integer Constrained Optimization Problems

Methods which do not use any derivative information are becoming popular among researchers, since they allow to solve many real-world engineering problems. Such problems are frequently characterized by the presence of discrete variables which can further complicate the optimization process. In this paper, we propose derivative-free algorithms for solving continuously differentiable Mixed Integer NonLinear Programming … Read more