Derivative-free Methods for Mixed-Integer Constrained Optimization Problems

Methods which do not use any derivative information are becoming popular among researchers, since they allow to solve many real-world engineering problems. Such problems are frequently characterized by the presence of discrete variables which can further complicate the optimization process. In this paper, we propose derivative-free algorithms for solving continuously differentiable Mixed Integer NonLinear Programming … Read more

Semidefinite Programming Reformulation of Completely Positive Programs: Range Estimation and Best-Worst Choice Modeling

We show that the worst case moment bound on the expected optimal value of a mixed integer linear program with a random objective c is closely related to the complexity of characterizing the convex hull of the points CH{(1 x) (1 x)’: x \in X} where X is the feasible region. In fact, we can … Read more

Choice Based Revenue Management for Parallel Flights

This paper describes a revenue management project with a major airline that operates in a fiercely competitive market involving two major hubs and having more than 30 parallel daily flights. The market has a number of unusual characteristics including (1) almost half of customers choose not to purchase the tickets after booking; (2) about half … Read more

A search for quantum coin-flipping protocols using optimization techniques

Coin-flipping is a cryptographic task in which two physically separated, mistrustful parties wish to generate a fair coin-flip by communicating with each other. Chailloux and Kerenidis (2009) designed quantum protocols that guarantee coin-flips with near optimal bias away from uniform, even when one party deviates arbitrarily from the protocol. The probability of any outcome in … Read more

On Auction Models of Conflict with Network Applications

We consider several models of complex systems with active elements and show that the auction mechanism appears very natural in attaining proper equilibrium states, even in comparison with game theory ones. In particular, network equilibria are treated as implementation of the auction principle. An additional example of resource allocation in wireless communication networks is also … Read more

Topology Optimization for Magnetic Circuits dedicated to Electric Propulsion

Abstract—In this paper, we present a method to solve inverse problems of electromagnetic circuit design which are formulated as a topology optimization problem. Indeed, by imposing the magnetic field inside a region, we search a best material distribution into variable domains. In order to perform this, we minimize the quadratic error between the prescribed magnetic … Read more

Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse

With stochastic integer programming as the motivating application, we investigate techniques to use integrality constraints to obtain improved cuts within a Benders decomposition algorithm. We compare the effect of using cuts in two ways: (i) cut-and-project, where integrality constraints are used to derive cuts in the extended variable space, and Benders cuts are then used … Read more

Decomposition Algorithms for Two-Stage Chance-Constrained Programs

We study a class of chance-constrained two-stage stochastic optimization problems where second-stage feasible recourse decisions incur additional cost. In addition, we propose a new model, where “recovery” decisions are made for the infeasible scenarios to obtain feasible solutions to a relaxed second-stage problem. We develop decomposition algorithms with specialized optimality and feasibility cuts to solve … Read more

A Scalarization Proximal Point Method for Quasiconvex Multiobjective Minimization

In this paper we propose a scalarization proximal point method to solve multiobjective unconstrained minimization problems with locally Lipschitz and quasiconvex vector functions. We prove, under natural assumptions, that the sequence generated by the method is well defined and converges globally to a Pareto-Clarke critical point. Our method may be seen as an extension, for … Read more