Bicriteria Approximation of Chance Constrained Covering Problems

A chance constrained optimization problem involves constraints with random data which can be violated with probability bounded above by a prespecified small risk parameter. Such constraints are used to model reliability requirements in a variety of application areas such as finance, energy, service and manufacturing. Except under very special conditions, chance constrained problems are extremely … Read more

New Constraint Qualifications with Second-Order Properties in Nonlinear Optimization

In this paper we present and discuss new constraint qualifications to ensure the validity of well known second-order properties in nonlinear optimization. Here, we discuss conditions related to the so-called basic second-order condition, where a new notion of polar pairing is introduced in order to replace the polar operation, useful in the first-order case. We … Read more

Solving joint chance constrained problems using regularization and Benders’ decomposition

We consider stochastic programs with joint chance constraints with discrete random distribution. We reformulate the problem by adding auxiliary variables. Since the resulting problem has a non-regular feasible set, we regularize it by increasing the feasible set. We solve the regularized problem by iteratively solving a master problem while adding Benders’ cuts in a slave … Read more

The proximal alternating direction method of multipliers in the nonconvex setting: convergence analysis and rates

We propose two numerical algorithms for minimizing the sum of a smooth function and the composition of a nonsmooth function with a linear operator in the fully nonconvex setting. The iterative schemes are formulated in the spirit of the proximal and, respectively, proximal linearized alternating direction method of multipliers. The proximal terms are introduced through … Read more

Facets from Gadgets

We present a new tool for generating cutting planes for NP-hard combinatorial optimisation problems. It is based on the concept of gadgets — small subproblems that are “glued” together to form hard problems — which we borrow from the literature on computational complexity. Using gadgets, we are able to derive huge (exponentially large) new families … Read more

Wasserstein Distributionally Robust Optimization and Variation Regularization

Wasserstein distributionally robust optimization (DRO) has recently achieved empirical success for various applications in operations research and machine learning, owing partly to its regularization effect. Although the connection between Wasserstein DRO and regularization has been established in several settings, existing results often require restrictive assumptions, such as smoothness or convexity, that are not satisfied by … Read more

Convergence rates of Forward-Douglas-Rachford splitting method

Over the past years, operator splitting methods have become ubiquitous for non-smooth optimization owing to their simplicity and efficiency. In this paper, we consider the Forward–Douglas–Rachford splitting method (FDR) [10, 40], and study both global and local convergence rates of this method. For the global rate, we establish an o(1/k) convergence rate in terms of … Read more

Using Regularization and Second Order Information in Outer Approximation for Convex MINLP

In this paper, we present two new methods for solving convex mixed-integer nonlinear programming problems based on the outer approximation method. The first method is inspired by the level method and uses a regularization technique to reduce the step size when choosing new integer combinations. The second method combines ideas from both the level method … Read more

Optimal Decision Trees for Categorical Data via Integer Programming

Decision trees have been a very popular class of predictive models for decades due to their interpretability and good performance on categorical features. However, they are not always robust and tend to overfit the data. Additionally, if allowed to grow large, they lose interpretability. In this paper, we present a novel mixed integer programming formulation … Read more

Binary Extended Formulations of Polyhedral Mixed-integer Sets

We analyze different ways of constructing binary extended formulations of polyhedral mixed-integer sets with bounded integer variables and compare their relative strength with respect to split cuts. We show that among all binary extended formulations where each bounded integer variable is represented by a distinct collection of binary variables, what we call “unimodular” extended formulations … Read more