Regret Minimization in Stochastic Non-Convex Learning via a Proximal-Gradient Approach

Motivated by applications in machine learning and operations research, we study regret minimization with stochastic first-order oracle feedback in online constrained, and possibly non-smooth, non-convex problems. In this setting, the minimization of external regret is beyond reach, so we focus on a local regret measures defined via a proximal-gradient residual mapping. To achieve no (local) … Read more

Using first-order information in Direct Multisearch for multiobjective optimization

Derivatives are an important tool for single-objective optimization. In fact, it is commonly accepted that derivative-based methods present a better performance than derivative-free optimization approaches. In this work, we will show that the same does not apply to multiobjective derivative-based optimization, when the goal is to compute an approximation to the complete Pareto front of … Read more

Inexact Variable Metric Method for Convex-Constrained Optimization Problems

This paper is concerned with the inexact variable metric method for solving convex-constrained optimization problems. At each iteration of this method, the search direction is obtained by inexactly minimizing a strictly convex quadratic function over the closed convex feasible set. Here, we propose a new inexactness criterion for the search direction subproblems. Under mild assumptions, … Read more

Adaptable Energy Management System for Smart Buildings

This paper presents a novel adaptable energy management system for smart buildings. In this framework we model the energy consumption of a living unit, and its energy exchange with the surroundings. We explicitly consider the impact of the outside environment and design features such as building orientation, automatic shading, and double facade. We formulate this … Read more

Global Dynamic Optimization with Hammerstein-Wiener Models Embedded

Hammerstein-Wiener models constitute a significant class of block-structured dynamic models, as they approximate process nonlinearities on the basis of input-output data without requiring identification of a full nonlinear process model. Optimization problems with Hammerstein-Wiener models embedded are nonconvex, and thus local optimization methods may obtain suboptimal solutions. In this work, we develop a deterministic global … Read more

Decomposition and Adaptive Sampling for Data-Driven Inverse Linear Optimization

This work addresses inverse linear optimization where the goal is to infer the unknown cost vector of a linear program. Specifically, we consider the data-driven setting in which the available data are noisy observations of optimal solutions that correspond to different instances of the linear program. We introduce a new formulation of the problem that, … Read more

Largest small polygons: A sequential convex optimization approach

A small polygon is a polygon of unit diameter. The maximal area of a small polygon with $n=2m$ vertices is not known when $m\ge 7$. Finding the largest small $n$-gon for a given number $n\ge 3$ can be formulated as a nonconvex quadratically constrained quadratic optimization problem. We propose to solve this problem with a … Read more

On strong duality, theorems of the alternative, and projections in conic optimization

A conic program is the problem of optimizing a linear function over a closed convex cone intersected with an affine preimage of another cone. We analyse three constraint qualifications, namely a Closedness CQ, Slater CQ, and Boundedness CQ (also called Clark- Duffin theorem), that are sufficient for achieving strong duality and show that the first … Read more

Distributionally Robust Facility Location with Bimodal Random Demand

In this paper, we consider a decision-maker who wants to determine a subset of locations from a given set of candidate sites to open facilities and accordingly assign customer demand to these open facilities. Unlike classical facility location settings, we focus on a new setting where customer demand is bimodal, i.e., display, or belong to, … Read more

Mixed-integer Linear Programming Models and Algorithms for Generation and Transmission Expansion Planning of Power Systems

With the increasing penetration of renewable generating units, especially in remote areas not well connected with load demand, there are growing interests to co-optimize generation and transmission expansion planning (GTEP) in power systems. Due to the volatility in renewable generation, a planner needs to include the operating decisions into the planning model to guarantee feasibility. … Read more