Constrained Optimization in the Presence of Noise

The problem of interest is the minimization of a nonlinear function subject to nonlinear equality constraints using a sequential quadratic programming (SQP) method. The minimization must be performed while observing only noisy evaluations of the objective and constraint functions. In order to obtain stability, the classical SQP method is modified by relaxing the standard Armijo … Read more

Robust CARA Optimization

We propose robust optimization models and their tractable approximations that cater for ambiguity-averse decision makers whose underlying risk preferences are consistent with constant absolute risk aversion (CARA). Specifically, we focus on maximizing the worst-case expected exponential utility where the underlying uncertainty is generated from a set of stochastically independent factors with ambiguous marginals. To obtain … Read more

Data-Driven Ranges of Near-Optimal Actions for Finite Markov Decision Processes

Markov decision process (MDP) models have been used to obtain non-stationary optimal decision rules in various applications, such as treatment planning in medical decision making. However, in practice, decision makers may prefer other strategies that are not statistically different from the optimal decision rules. To benefit from the decision makers’ expertise and provide flexibility in … Read more

Optimization with Constraint Learning: A Framework and Survey

Many real-life optimization problems frequently contain one or more constraints or objectives for which there are no explicit formulas. If data is however available, these data can be used to learn the constraints. The benefits of this approach are clearly seen, however there is a need for this process to be carried out in a … Read more

A unified analysis of a class of proximal bundle methods for solving hybrid convex composite optimization problems

This paper presents a proximal bundle (PB) framework based on a generic bundle update scheme for solving the hybrid convex composite optimization (HCCO) problem and establishes a common iteration-complexity bound for any variant belonging to it. As a consequence, iteration-complexity bounds for three PB variants based on different bundle update schemes are obtained in the … Read more

Incorporating Holding Costs in Continuous-TimeService Network Design: New Model, Relaxation, and Exact Algorithm

The continuous-time service network design problem (CTSNDP) occurs widely in practice. It aims to minimize the total operational cost by optimizing the schedules of transportation services and the routes of shipments for dispatching, which can occur at any time point along a continuous planning horizon. In order to be cost effective, shipments often wait to … Read more

Inexact bilevel stochastic gradient methods for constrained and unconstrained lower-level problems

Two-level stochastic optimization formulations have become instrumental in a number ofmachine learning contexts such as continual learning, neural architecture search, adversariallearning, and hyperparameter tuning. Practical stochastic bilevel optimization problemsbecome challenging in optimization or learning scenarios where the number of variables ishigh or there are constraints. In this paper, we introduce a bilevel stochastic gradient method … Read more

Presolving for Mixed-Integer Semidefinite Optimization

This paper provides a discussion and evaluation of presolving methods for mixed-integer semidefinite programs. We generalize methods from the mixed-integer linear case and introduce new methods that depend on the semidefinite condition. The considered methods include adding linear constraints, bounds relying on 2 × 2 minors of the semidefinite constraints, bound tightening based on solving … Read more

Adjustable robust optimization with objective uncertainty

In this work, we study optimization problems where some cost parameters are not known at decision time and the decision flow is modeled as a two-stage process within a robust optimization setting. We address general problems in which all constraints (including those linking the first and the second stages) are defined by convex functions and … Read more