Full-low evaluation methods for derivative-free optimization

We propose a new class of rigorous methods for derivative-free optimization with the aim of delivering efficient and robust numerical performance for functions of all types, from smooth to non-smooth, and under different noise regimes. To this end, we have developed Full-Low Evaluation methods, organized around two main types of iterations. The first iteration type … Read more

Global optimization using random embeddings

We propose a random-subspace algorithmic framework for global optimization of Lipschitz-continuous objectives, and analyse its convergence using novel tools from conic integral geometry. X-REGO randomly projects, in a sequential or simultaneous manner, the high- dimensional original problem into low-dimensional subproblems that can then be solved with any global, or even local, optimization solver. We estimate … Read more

A spectral PALM algorithm for matrix and tensor-train based Dictionary Learning

Dictionary Learning (DL) is one of the leading sparsity promoting techniques in the context of image classification, where the “dictionary” matrix D of images and the sparse matrix X are determined so as to represent a redundant image dataset. The resulting constrained optimization problem is nonconvex and non-smooth, providing several computational challenges for its solution. … Read more

Exact and Approximate Schemes for Robust Optimization Problems with Decision Dependent Information Discovery

Uncertain optimization problems with decision dependent information discovery allow the decision maker to control the timing of information discovery, in contrast to the classic multistage setting where uncertain parameters are revealed sequentially based on a prescribed filtration. This problem class is useful in a wide range of applications, however, its assimilation is partly limited by … Read more

A solution algorithm for chance-constrained problems with integer second-stage recourse decisions

We study a class of chance-constrained two-stage stochastic optimization problems where the second-stage recourse decisions belong to mixed-integer convex sets. Due to the nonconvexity of the second-stage feasible sets, standard decomposition approaches cannot be applied. We develop a provably convergent branch-and-cut scheme that iteratively generates valid inequalities for the convex hull of the second-stage feasible … Read more

Dual SDDP for risk-averse multistage stochastic programs

Risk-averse multistage stochastic programs appear in multiple areas and are challenging to solve. Stochastic Dual Dynamic Programming (SDDP) is a well-known tool to address such problems under time-independence assumptions. We show how to derive a dual formulation for these problems and apply an SDDP algorithm, leading to converging and deterministic upper bounds for risk-averse problems. … Read more

Robust Integration of Electric Vehicles Charging Load in Smart Grid’s Capacity Expansion Planning

Battery charging of electric vehicles (EVs) needs to be properly coordinated by electricity producers to maintain network reliability. In this paper, we propose a robust approach to model the interaction between a large fleet of EV users and utilities in a long-term generation expansion planning problem. In doing so, we employ a robust multi-period adjustable … Read more

Bishop-Phelps cones given by an equation in Banach spaces

In this work, we study Bishop-Phelps cones (briefly, BP cones) given by an equation in Banach spaces. Due to the special form, these cones enjoy interesting properties. We show that nontrivial BP cones given by an equation form a “large family” in some sense in any Banach space and they can be used to characterize … Read more

A Vectorization Scheme for Nonconvex Set Optimization Problems

In this paper, we study a solution approach for set optimization problems with respect to the lower set less relation. This approach can serve as a base for numerically solving set optimization problems by using established solvers from multiobjective optimization. Our strategy consists of deriving a parametric family of multiobjective optimization problems whose optimal solution … Read more

A novel approach for bilevel programs based on Wolfe duality

This paper considers a bilevel program, which has many applications in practice. To develop effective numerical algorithms, it is generally necessary to transform the bilevel program into a single-level optimization problem. The most popular approach is to replace the lower-level program by its KKT conditions and then the bilevel program can be transformed into a … Read more