Personal Shopper Systems in Last-Mile Logistics

This paper explores the logistics operations of instant grocery delivery services. We specifically concentrate on two widely adopted strategies: Personal Shopper Systems (PSS) and Inventory Owned Delivery Systems (IOD). In the PSS, couriers visit affiliated brick and mortar stores in the delivery area to pick and purchase ordered products and deliver them to customers. Whereas … Read more

Solution Strategies for Integrated Distribution, Production, and Routing Problems Arising in Modular Manufacturing

Recently, there has been a paradigm shift by certain energy and chemical companies towards modular manufacturing, whereby transportable modular production units can be relocated between production facilities to meet the spatial and temporal changes in the availabilities, demands, and prices of the underlying commodities. We refer to the optimal distribution, production, and storage of commodities, … Read more

Convergence Results for Primal-Dual Algorithms in the Presence of Adjoint Mismatch

Most optimization problems arising in imaging science involve high-dimensional linear operators and their adjoints. In the implementations of these operators, approximations may be introduced for various practical considerations (e.g., memory limitation, computational cost, convergence speed), leading to an adjoint mismatch. This occurs for the X-ray tomographic inverse problems found in Computed Tomography (CT), where the … Read more

Riemannian Interior Point Methods for Constrained Optimization on Manifolds

We extend the classical primal-dual interior point method from the Euclidean setting to the Riemannian one. Our method, named the Riemannian interior point method (RIPM), is for solving Riemannian  constrained optimization problems. We establish its locally superlinear and quadratic convergence  under the standard assumptions. Moreover, we show its global convergence when it is combined with … Read more

Distributionally Robust Chance Constrained $p$-Hub Center Problem

The $p$-hub center problem is a fundamental model for the strategic design of hub location. It aims at constructing $p$ fully interconnected hubs and links from nodes to hubs so that the longest path between any two nodes is minimized. Existing literature on the $p$-hub center problem under uncertainty often assumes a joint distribution of … Read more

A family of accelerated inexact augmented Lagrangian methods with applications to image restoration

In this paper, we focus on a class of convex optimization problems subject to equality or inequality constraints and have developed an Accelerated Inexact Augmented Lagrangian Method (AI-ALM). Different relative error criteria are designed to solve the subproblem of AI-ALM inexactly, and the popular used relaxation step is exploited to accelerate the convergence. By a … Read more

A new sufficient condition for non-convex sparse recovery via weighted $\ell_r\!-\!\ell_1$ minimization

In this letter, we discuss the reconstruction of sparse signals from undersampled data, which belongs to the core content of compressed sensing. A new sufficient condition in terms of the restricted isometry constant (RIC) and restricted orthogonality constant (ROC) is first established for the performance guarantee of recently proposed non-convex weighted $\ell_r-\ell_1$ minimization in recovering … Read more

CliSAT: a SAT-based exact algorithm for hard maximum clique problems

Given a graph, the maximum clique problem (MCP) asks for determining a complete subgraph with the largest possible number of vertices. We propose a new exact algorithm, called CliSAT, to solve the MCP to proven optimality. This problem is of fundamental importance in graph theory and combinatorial optimization due to its practical relevance for a … Read more

A decomposition method for lasso problems with zero-sum constraint

In this paper, we consider lasso problems with zero-sum constraint, commonly required for the analysis of compositional data in high-dimensional spaces. A novel algorithm is proposed to solve these problems, combining a tailored active-set technique, to identify the zero variables in the optimal solution, with a 2-coordinate descent scheme. At every iteration, the algorithm chooses … Read more

A level-set-based topology optimization strategy using radial basis functions and a Hilbertian velocity extension

This work addresses the structural compliance minimization problem through a level-set-based strategy that rests upon radial basis functions with compact support combined with Hilbertian velocity extensions. A consistent augmented Lagrangian scheme is adopted to handle the volume constraint. The linear elasticity model and the variational problem associated with the computation of the velocity field are … Read more