Contextual Stochastic Programs with Expected-Value Constraints

Expected-value-constrained programming (ECP) formulations are a broad class of stochastic programming problems including integrated chance constraints, risk models, and stochastic dominance formulations. Given the wide availability of data, it is common in applications to have independent contextual information associated with the target or dependent random variables of the problem. We show how to incorporate such … Read more

Distributionally Robust Optimization with Decision-Dependent Polyhedral Ambiguity

We consider a two-stage stochastic program with continuous recourse, where the distribution of the random parameters depends on the decisions. Assuming a finite sample space, we study a distributionally robust approach to this problem, where the decision-dependent distributional ambiguity is modeled with a polyhedral ambiguity set. We consider cases where the recourse function and the … Read more

Computational Methods for the Household Assignment Problem

We consider the household assignment problem as it occurs in the geo-referencing step of spatial microsimulation models. The resulting model is a maximum weight matching problem with additional side constraints. For real-world instances such as the one for the city of Trier in Germany, the number of binary variables exceeds 10^9, and the resulting instances … Read more

Granularity for mixed-integer polynomial optimization problems

Finding good feasible points is crucial in mixed-integer programming. For this purpose we combine a sufficient condition for consistency, called granularity, with the moment-/sos-hierarchy from polynomial optimization. If the mixed-integer problem is granular, we obtain feasible points by solving continuous polynomial problems and rounding their optimal points. The moment-/sos-hierarchy is hereby used to solve those … Read more

BOBILib: Bilevel Optimization (Benchmark) Instance Library

In this report, we present the BOBILib, a collection of more than 2500~instances of mixed integer linear bilevel optimization problems. The goal of this library is to make a large and well-curated set of test instances freely available for the research community so that new and existing algorithms in bilevel optimization can be tested and … Read more

Exact Augmented Lagrangian Duality for Nonconvex Mixed-Integer Nonlinear Optimization

In the context of mixed-integer nonlinear problems (MINLPs), it is well-known that strong duality does not hold in general if the standard Lagrangian dual is used. Hence, we consider the augmented Lagrangian dual (ALD), which adds a nonlinear penalty function to the classic Lagrangian function. For this setup, we study conditions under which the ALD … Read more

Inverse of the Gomory Corner Relaxation of Integer Programs

We analyze the inverse of the Gomory corner relaxation (GCR) of a pure integer program (IP). We prove the inverse GCR is equivalent to the inverse of a shortest path problem, yielding a polyhedral representation of the GCR inverse-feasible region. We present a linear programming (LP) formulation for solving the inverse GCR under the \(L_{1}\) … Read more

Complexity results and active-set identification of a derivative-free method for bound-constrained problems

In this paper, we analyze a derivative-free line search method designed for bound-constrained problems. Our analysis demonstrates that this method exhibits a worst-case complexity comparable to other derivative-free methods for unconstrained and linearly constrained problems. In particular, when minimizing a function with $n$ variables, we prove that at most ${\cal O}(n\epsilon^{-2})$ iterations are needed to … Read more