Minimization of nonsmooth nonconvex functions using inexact evaluations and its worst-case complexity

An adaptive regularization algorithm using inexact function and derivatives evaluations is proposed for the solution of composite nonsmooth nonconvex optimization. It is shown that this algorithm needs at most O(|log(epsilon)|.epsilon^{-2}) evaluations of the problem’s functions and their derivatives for finding an $\epsilon$-approximate first-order stationary point. This complexity bound therefore generalizes that provided by [Bellavia, Gurioli, … Read more

A note on solving nonlinear optimization problems in variable precision

This short note considers an efficient variant of the trust-region algorithm with dynamic accuracy proposed Carter (1993) and Conn, Gould and Toint (2000) as a tool for very high-performance computing, an area where it is critical to allow multi-precision computations for keeping the energy dissipation under control. Numerical experiments are presented indicating that the use … Read more

Minimizing convex quadratics with variable precision Krylov methods

Iterative algorithms for the solution of convex quadratic optimization problems are investigated, which exploit inaccurate matrix-vector products. Theoretical bounds on the performance of a Conjugate Gradients and a Full-Orthormalization methods are derived, the necessary quantities occurring in the theoretical bounds estimated and new practical algorithms derived. Numerical experiments suggest that the new methods have significant … Read more

A note on preconditioning weighted linear least squares, with consequences for weakly-constrained variational data assimilation

The effect of preconditioning linear weighted least-squares using an approximation of the model matrix is analyzed, showing the interplay of the eigenstructures of both the model and weighting matrices. A small example is given illustrating the resulting potential inefficiency of such preconditioners. Consequences of these results in the context of the weakly-constrained 4D-Var data assimilation … Read more

On the use of the saddle formulation in weakly-constrained 4D-VAR data assimilation

This paper discusses the practical use of the saddle variational formulation for the weakly-constrained 4D-VAR method in data assimilation. It is shown that the method, in its original form, may produce erratic results or diverge because of the inherent lack of monotonicity of the produced objective function values. Convergent, variationaly coherent variants of the algorithm … Read more

A Line-Search Algorithm Inspired by the Adaptive Cubic Regularization Framework and Complexity Analysis

Adaptive regularized framework using cubics has emerged as an alternative to line-search and trust-region algorithms for smooth nonconvex optimization, with an optimal complexity amongst second-order methods. In this paper, we propose and analyze the use of an iteration dependent scaled norm in the adaptive regularized framework using cubics. Within such scaled norm, the obtained method … Read more

A Levenberg-Marquardt method for large nonlinear least-squares problems with dynamic accuracy in functions and gradients

In this paper we consider large scale nonlinear least-squares problems for which function and gradient are evaluated with dynamic accuracy and propose a Levenberg-Marquardt method for solving such problems. More precisely, we consider the case in which the exact function to optimize is not available or its evaluation is computationally demanding, but ap- proximations of … Read more

On the use of the energy norm in trust-region and adaptive cubic regularization subproblems

We consider solving unconstrained optimization problems by means of two popular globalization techniques: trust-region (TR) algorithms and adaptive regularized framework using cubics (ARC). Both techniques require the solution of a so-called “subproblem” in which a trial step is computed by solving an optimization problem involving an approximation of the objective function, called “the model”. The … Read more

A decoupled first/second-order steps technique for nonconvex nonlinear unconstrained optimization with improved complexity bounds

In order to be provably convergent towards a second-order stationary point, optimization methods applied to nonconvex problems must necessarily exploit both first and second-order information. However, as revealed by recent complexity analyzes of some of these methods, the overall effort to reach second-order points is significantly larger when compared to the one of approaching first-order … Read more

Complexity and global rates of trust-region methods based on probabilistic models

Trust-region algorithms have been proved to globally converge with probability one when the accuracy of the trust-region models is imposed with a certain probability conditioning on the iteration history. In this paper, we study their complexity, providing global rates and worst case complexity bounds on the number of iterations (with overwhelmingly high probability), for both … Read more