A Toll-Setting Problem with Robust Wardrop Equilibrium Conditions Under Budgeted Uncertainty

We consider the problem of determining optimal tolls in a traffic network in which a toll-setting authority aims to maximize revenues and the users of the network act in the sense of Wardrop’s user equilibrium. The setting is modeled as a mathematical problem with equilibrium constraints and a mixed-integer, nonlinear, and nonconvex reformulation is presented … Read more

Incorporating Service Reliability in Multi-depot Vehicle Scheduling: A Chance-Constrained Approach

The multi-depot vehicle scheduling problem (MDVSP) is a critical planning challenge for transit agencies. We introduce a novel approach to MDVSP by incorporating service reliability through chance-constrained programming (CCP), targeting the pivotal issue of travel time uncertainty and its impact on transit service quality. Our model guarantees service reliability measured by on-time performance (OTP), a … Read more

Relay-Hub Network Design for Consolidation Planning Under Demand Variability

Problem description: We study the problem of designing large-scale resilient relay logistics hub networks. We propose a model of Capacitated Relay Network Design under Stochastic Demand and Consolidation-Based Routing (CRND-SDCR), which aims to improve a network’s efficiency and resilience against commodity demand variability through integrating tactical decisions. Methodology: We formulate CRND-SDCR as a two-stage stochastic … Read more

The Multi-Stop Station Location Problem: Exact Approaches

The multi-stop station location problem (MSLP) aims to place stations such that a set of trips is feasible with respect to length bounds while minimizing cost. Each trip consists of a sequence of stops that must be visited in a given order, and a length bound that controls the maximum length that is possible without … Read more

Robust Drone Delivery with Weather Information

Problem definition: Drone delivery has recently garnered significant attention due to its potential for faster delivery at a lower cost than other delivery options. When scheduling drones from a depot for delivery to various destinations, the dispatcher must take into account the uncertain wind conditions, which affect the delivery times of drones to their destinations, … Read more

Store Fulfillment with Autonomous Mobile Robots and In-Store Customers

Omnichannel services, such as buy-online-pickup-in-store, curbside pickup, and ship-from-store, have shifted the order-picking tasks previously completed by in-store customers doing their own shopping to the retailer’s responsibility. To fulfill these orders, many retailers have deployed a store fulfillment strategy, where online orders are picked from brick-and-mortar retail store shelves. We focus on the design of … Read more

Branch and Price for the Length-Constrained Cycle Partition Problem

The length-constrained cycle partition problem (LCCP) is a graph optimization problem in which a set of nodes must be partitioned into a minimum number of cycles. Every node is associated with a critical time and the length of every cycle must not exceed the critical time of any node in the cycle. We formulate LCCP … Read more

Crew Scheduling and Routing Problem in Road Restoration via Branch-and-Price Algorithms

This paper addresses the single crew scheduling and routing problem in the context of road network repair and restoration, which is critical in assisting complex post-disaster decisions in humanitarian logistics settings. We present three novel formulations for this problem, which are the first suitable for column generation and branch-and-price (BP) algorithms. Specifically, our first formulation … Read more

Submodular Dispatching with Multiple Vehicles

Motivated by applications in e-commerce logistics and production planning where orders (or items, or jobs) arrive at different times and must be dispatched or processed in batches, we consider a multi-vehicle dispatching problem that captures the tension between waiting for orders to arrive and the economies of scale due to batching. Our model extends the … Read more

Neural Approximate Dynamic Programming for the Ultra-fast Order Dispatching Problem

Same-Day Delivery (SDD) services aim to maximize the fulfillment of online orders while minimizing delivery delays but are beset by operational uncertainties such as those in order volumes and courier planning. Our work aims to enhance the operational efficiency of SDD by focusing on the ultra-fast Order Dispatching Problem (ODP), which involves matching and dispatching … Read more