Large-scale semidefinite programs in electronic structure calculation

Employing the variational approach having the two-body reduced density matrix (RDM) as variables to compute the ground state energies of atomic-molecular systems has been a long time dream in electronic structure theory in chemical physics/physical chemistry. Realization of the RDM approach has benefited greatly from recent developments in semidefinite programming (SDP). We present the actual … Read more

On the control of an evolutionary equilibrium in micromagnetics

We formulate an optimal control problem of magnetization in a ferromagnet as a mathematical program with evolutionary equilibrium constraints. The evolutionary nature of the equilibrium is due to the hysteresis behavior of the respective magnetization process. To solve the problem numerically, we adapted the implicit programming technique. The adjoint equations, needed to compute the subgradients … Read more

Analysis of a Belgian Chocolate Stabilization Problem

We give a detailed numerical and theoretical analysis of a stabilization problem posed by V. Blondel in 1994. Our approach illustrates the effectiveness of a new gradient sampling algorithm for finding local optimizers of nonsmooth, nonconvex optimization problems arising in control, as well as the power of nonsmooth analysis for understanding variational problems involving polynomial … Read more

NONLINEAR OPTIMIZATION IN MODELING ENVIRONMENTS: Software Implementations for Compilers, Spreadsheets, Modeling Languages, and Integrated Computing Systems

We present a review of several professional software products that serve to analyze and solve nonlinear (global and local) optimization problems across a variety of hardware and software environments. The product versions discussed have been implemented for compiler platforms, spreadsheets, algebraic (optimization) modeling languages, and for integrated scientific-technical computing systems. The discussion highlights some of … Read more

A Population Based Approach for Hard Global Optimization Problems Based on Dissimilarity Measures

When dealing with extremely hard global optimization problems, i.e. problems with a large number of variables and a huge number of local optima, heuristic procedures are the only possible choice. In this situation, lacking any possibility of guaranteeing global optimality for most problem instances, it is quite difficult to establish rules for discriminating among different … Read more

Optimization of discrete control systems with varying structure

In this paper a special step control problem is considered. The formulation of the problem uses a parameter to control the switching point. By using Taylor’s increment methods first and second order optimality conditions (in the sense of Pontryagin’s maximum principle) will be derived. CitationPreprint 2005-1, Department of Mathematics and Computer Science, Technical University Bergakademie … Read more

Continuous optimization of beamlet intensities for photon and proton radiotherapy

Inverse approaches and, in particular, intensity modulated radiotherapy (IMRT), in combination with the development of new technologies such as multi-leaf collimators (MLCs), have enabled new potentialities of radiotherapy for cancer treatment. The main mathematical tool needed in this connection is numerical optimization. In this article, the variety of continuous optimization approaches, which have been proposed … Read more

Computational experience with an interior point algorithm for large scale contact problems

In this paper we present an interior point method for large scale Signorini elastic contact problems. We study the case of an elastic body in frictionless contact with a rigid foundation. Primal and primal-dual algorithms are developed to solve the quadratic optimization problem arising in the variational formulation. Our computational study confirms the efficiency of … Read more

A Tabu Search Algorithm for Partitioning

We present an original method for partitioning by automatic classi- fication, using the optimization technique of tabu search. The method uses a classical tabu search scheme based on transfers for the minimization of the within variance; it introduces in the tabu list the indicator of the object transfered. This method is compared with two stochastic … Read more

Convergent relaxations of polynomial matrix inequalities and static output feedback

Using a moment interpretation of recent results on sum-of-squares decompositions of non-negative polynomial matrices, we propose a hierarchy of convex linear matrix inequality (LMI) relaxations to solve non-convex polynomial matrix inequality (PMI) optimization problems, including bilinear matrix inequality (BMI) problems. This hierarchy of LMI relaxations generates a monotone sequence of lower bounds that converges to … Read more