Exact solution of the donor-limited nearest neighbor hot deck imputation problem

Data quality in population surveys suffers from missing responses. We use combinatorial optimization to create a complete and coherent data set. The methods are based on the widespread nearest neighbor hot deck imputation method that replaces the missing values with observed values from a close unit, the so-called donor. As a repeated use of donors … Read more

Computing Estimators of Dantzig Selector type via Column and Constraint Generation

We consider a class of linear-programming based estimators in reconstructing a sparse signal from linear measurements. Specific formulations of the reconstruction problem considered here include Dantzig selector, basis pursuit (for the case in which the measurements contain no errors), and the fused Dantzig selector (for the case in which the underlying signal is piecewise constant). … Read more

A Survey of Recent Scalability Improvements for Semidefinite Programming with Applications in Machine Learning, Control, and Robotics

Historically, scalability has been a major challenge to the successful application of semidefinite programming in fields such as machine learning, control, and robotics. In this paper, we survey recent approaches for addressing this challenge including (i) approaches for exploiting structure (e.g., sparsity and symmetry) in a problem, (ii) approaches that produce low-rank approximate solutions to … Read more

Competing Objective Optimization in Networked Swarm Systems

In this paper, we develop a decentralized collaborative sensing algorithm where the sensors are located on-board autonomous unmanned aerial vehicles. We develop this algorithm in the context of a target tracking application, where the objective is to maximize the tracking performance measured by the meansquared error between the target state estimate and the ground truth. … Read more

Optimal Aggregated Peak Shaving Via Residential Demand Response: A Framework for Retailers

This paper proposes an optimization framework for retailers that are involved in demand response (DR) programs. In a first phase responsive users optimize their own household consumption, characterizing not only their smart home components but also their comfort preferences. Then, the retailer exploits in a second phase this preliminary non-coordinated solution to implement a peak … Read more

Improved Penalty Algorithm for Mixed Integer PDE Constrained Optimization (MIPDECO) Problems

Optimal control problems including partial differential equation (PDE) as well as integer constraints merge the combinatorial difficulties of integer programming and the challenges related to large-scale systems resulting from discretized PDEs. So far, the Branch-and-Bound framework has been the most common solution strategy for such problems. In order to provide an alternative solution approach, especially … Read more

A Stochastic Bin Packing Approach for Server Consolidation with Conflicts

The energy consumption of large-scale data centers or server clusters is expected to grow significantly in the next couple of years contributing to up to 13 percent of the worlwide energy demand in 2030. As the involved processing units require a disproportional amount of energy when they are idle, underutilized or overloaded, balancing the supply … Read more

Adjustable robust treatment-length optimization in radiation therapy

Traditionally, optimization of radiation therapy (RT) treatment plans has been done before the initiation of RT course, using population-wide estimates for patients’ response to therapy. However, recent technological advancements have enabled monitoring individual patient response during the RT course, in the form of biomarkers. Although biomarker data remains subject to substantial uncertainties, information extracted from … Read more

Optimal K-Thresholding Algorithms for Sparse Optimization Problems

The simulations indicate that the existing hard thresholding technique independent of the residual function may cause a dramatic increase or numerical oscillation of the residual. This inherit drawback of the hard thresholding renders the traditional thresholding algorithms unstable and thus generally inefficient for solving practical sparse optimization problems. How to overcome this weakness and develop … Read more

Quantifying the value of flexibility: demand response versus storage

Intermittent sources of energy represent a challenge for electrical networks, particularly regarding demand satisfaction at peak times. Energy management tools such as load shaving or storage systems can be used to mitigate abrupt variations in the network.The value of different mechanisms to move energy through time is determined by a multi-objective programming approach, that aims … Read more