An analysis of noise folding for low-rank matrix recovery

Previous work regarding low-rank matrix recovery has concentrated on the scenarios in which the matrix is noise-free and the measurements are corrupted by noise. However, in practical application, the matrix itself is usually perturbed by random noise preceding to measurement. This paper concisely investigates this scenario and evidences that, for most measurement schemes utilized in … Read more

Trust-region methods for the derivative-free optimization of nonsmooth black-box functions

In this paper we study the minimization of a nonsmooth black-box type function, without assuming any access to derivatives or generalized derivatives and without any knowledge about the analytical origin of the function nonsmoothness. Directional methods have been derived for such problems but to our knowledge no model-based method like a trust-region one has yet … Read more

Integer Programming for Learning Directed Acyclic Graphs from Continuous Data

Learning directed acyclic graphs (DAGs) from data is a challenging task both in theory and in practice, because the number of possible DAGs scales superexponentially with the number of nodes. In this paper, we study the problem of learning an optimal DAG from continuous observational data. We cast this problem in the form of a … Read more

Discrete Optimization Methods for Group Model Selection in Compressed Sensing

In this article we study the problem of signal recovery for group models. More precisely for a given set of groups, each containing a small subset of indices, and for given linear sketches of the true signal vector which is known to be group-sparse in the sense that its support is contained in the union … Read more

An Alternating Manifold Proximal Gradient Method for Sparse PCA and Sparse CCA

Sparse principal component analysis (PCA) and sparse canonical correlation analysis (CCA) are two essential techniques from high-dimensional statistics and machine learning for analyzing large-scale data. Both problems can be formulated as an optimization problem with nonsmooth objective and nonconvex constraints. Since non-smoothness and nonconvexity bring numerical difficulties, most algorithms suggested in the literature either solve … Read more

Efficient Derivative Evaluation for Rigid-body Dynamics based on Recursive Algorithms subject to Kinematic and Loop Constraints

Simulation, optimization and control of robotic and bio-mechanical systems depend on a mathematical model description, typically a rigid-body system connected by joints, for which efficient algorithms to compute the forward or inverse dynamics exist. Models that e.g.\ include spring-damper systems are subject to both kinematic and loop constraints. Gradient-based optimization and control methods require derivatives … Read more

High-Order Evaluation Complexity for Convexly-Constrained Optimization with Non-Lipschitzian Group Sparsity Terms

This paper studies high-order evaluation complexity for partially separable convexly-constrained optimization involving non-Lipschitzian group sparsity terms in a nonconvex objective function. We propose a partially separable adaptive regularization algorithm using a $p$-th order Taylor model and show that the algorithm can produce an (epsilon,delta)-approximate q-th-order stationary point in at most O(epsilon^{-(p+1)/(p-q+1)}) evaluations of the objective … Read more

A Framework for Peak Shaving Through the Coordination of Smart Homes

In demand–response programs, aggregators balance the needs of generation companies and end-users. This work proposes a two-phase framework that shaves the aggregated peak loads while maintaining the desired comfort level for users. In the first phase, the users determine their planned consumption. For the second phase, we develop a bilevel model with mixed-integer variables and … Read more

Recovery of a mixture of Gaussians by sum-of-norms clustering

Sum-of-norms clustering is a method for assigning $n$ points in $\R^d$ to $K$ clusters, $1\le K\le n$, using convex optimization. Recently, Panahi et al.\ proved that sum-of-norms clustering is guaranteed to recover a mixture of Gaussians under the restriction that the number of samples is not too large. The purpose of this note is to … Read more

Optimal Residential Battery Storage Operations Using Robust Data-driven Dynamic Programming

In this paper, we consider the problem of operating a battery storage unit in a home with a rooftop solar photovoltaic (PV) system so as to minimize expected long-run electricity costs under uncertain electricity usage, PV generation, and electricity prices. Solving this dynamic program using standard techniques is computationally burdensome, and is often complicated by … Read more