A proximal point algorithm for sequential feature extraction applications

We propose a proximal point algorithm to solve LAROS problem, that is the problem of finding a “large approximately rank-one submatrix”. This LAROS problem is used to sequentially extract features in data. We also develop a new stopping criterion for the proximal point algorithm, which is based on the duality conditions of \eps-optimal solutions of … Read more

Efficient Serial and Parallel Coordinate Descent Methods for Huge-Scale Truss Topology Design

In this work we propose solving huge-scale instances of the truss topology design problem with coordinate descent methods. We develop four efficient codes: serial and parallel implementations of randomized and greedy rules for the selection of the variable (potential bar) to be updated in the next iteration. Both serial methods enjoy an O(n/k) iteration complexity … Read more

An algorithm for the choice of the regularization parameter in inverse problems in imaging

In this paper we present an iterative algorithm for the solution of regularization problems arising in inverse image processing. The regularization function to be minimized is constituted by two terms, a data fit function and a regularization function, weighted by a regularization parameter. The proposed algorithm solves the minimization problem and estimates the regularization parameter … Read more

Manifold Identification in Dual Averaging for Regularized Stochastic Online Learning

Iterative methods that calculate their steps from approximate subgradient directions have proved to be useful for stochastic learning problems over large and streaming data sets. When the objective consists of a loss function plus a nonsmooth regularization term, the solution often lies on a low-dimensional manifold of parameter space along which the regularizer is smooth. … Read more

Approximation of rank function and its application to the nearest low-rank correlation matrix

The rank function $\rank(\cdot)$ is neither continuous nor convex which brings much difficulty to the solution of rank minimization problems. In this paper, we provide a unified framework to construct the approximation functions of $\rank(\cdot)$, and study their favorable properties. Particularly, with two families of approximation functions, we propose a convex relaxation method for the … Read more

Fast First-Order Methods for Stable Principal Component Pursuit

The stable principal component pursuit (SPCP) problem is a non-smooth convex optimization problem, the solution of which has been shown both in theory and in practice to enable one to recover the low rank and sparse components of a matrix whose elements have been corrupted by Gaussian noise. In this paper, we first show how … Read more

Real-Time Optimization Strategies for Building Systems

We propose real-time optimization strategies for energy management in building systems. We have found that exploiting building-wide multivariable interactions between CO2 and humidity, pressure, occupancy, and temperature leads to significant reductions of energy intensity compared with traditional strategies. Our analysis indicates that it is possible to obtain energy savings of more than 50% compared with … Read more

HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve state-of-the-art performance on a variety of machine learning tasks. Several researchers have recently proposed schemes to parallelize SGD, but all require performance-destroying memory locking and synchronization. This work aims to show using novel theoretical analysis, algorithms, and implementation that SGD can be implemented *without … Read more

Optimal Design of Electrical Machines: Mathematical Programming Formulations

The optimal design of electrical machines can be mathematically modeled as a mixed-integer nonlinear optimization problem. We present six variants of such a problem, and we show, through extensive computational experiments, that, even though they are mathematically equivalent, the differences in the formulations may have an impact on the numerical performances of a local optimization … Read more

Multi-level Verticality Optimization: Concept, Strategies, and Drawing Scheme

In traditional multi-level graph drawing – known as Sugiyama’s framework – the number of crossings is considered one of the most important goals. Herein, we propose the alternative concept of optimizing the verticality of the drawn edges. We formally specify the problem, discuss its relative merits, and show that drawings that are good w.r.t. verticality … Read more