Computational Methods for the Household Assignment Problem

We consider the problem of assigning the entries of a household data set to real-world address data. This household assignment problem occurs in the geo-referencing step of spatial microsimulation models. The resulting combinatorial optimization model is a maximum weight matching problem with additional side constraints. Even for real-world instances of medium size, such as the … Read more

A General Framework for Sequential Batch-Testing

We consider sequential testing problems that involve a system of \(n\) stochastic components, each of which is either working or faulty with independent probability. The overall state of the system is a function of the state of its individual components, and the goal is to determine the system state by testing its components at the … Read more

Globally Convergent Derivative-Free Methods in Nonconvex Optimization with and without Noise

This paper addresses the study of nonconvex derivative-free optimization problems, where only information of either smooth objective functions or their noisy approximations is available. General derivative-free methods are proposed for minimizing differentiable (not necessarily convex) functions with globally Lipschitz continuous gradients, where the accuracy of approximate gradients is interacting with stepsizes and exact gradient values. … Read more

On Packing a Submodular Knapsack of Unknown Capacity

Consider the problem of maximizing a monotone-increasing submodular function defined on a set of weighted items under an unknown knapsack capacity. Assume that items are packed sequentially into the knapsack and that the capacity of the knapsack is accessed through an oracle that answers whether an item fits into the currently packed knapsack. If an … Read more

Solving Hard Bi-objective Knapsack Problems Using Deep Reinforcement Learning

We study a class of bi-objective integer programs known as bi-objective knapsack problems (BOKPs). Our research focuses on the development of innovative exact and approximate solution methods for BOKPs by synergizing algorithmic concepts from two distinct domains: multi-objective integer programming and (deep) reinforcement learning. While novel reinforcement learning techniques have been applied successfully to single-objective … Read more

The alternating simultaneous Halpern-Lions-Wittmann-Bauschke algorithm for finding the best approximation pair for two disjoint intersections of convex sets

Given two nonempty and disjoint intersections of closed and convex subsets, we look for a best approximation pair relative to them, i.e., a pair of points, one in each intersection, attaining the minimum distance between the disjoint intersections. We propose an iterative process based on projections onto the subsets which generate the intersections. The process … Read more

Approximation Algorithms for Min-max-min Robust Optimization and K-Adaptability under Objective Uncertainty

In this work we investigate the min-max-min robust optimization problem and the k-adaptability robust optimization problem for binary problems with uncertain costs. The idea of the first approach is to calculate a set of k feasible solutions which are worst-case optimal if in each possible scenario the best of the k solutions is implemented. It … Read more

General Polyhedral Approximation of Two-Stage Robust Linear Programming

We consider two-stage robust linear programs with uncertain righthand side. We develop a General Polyhedral Approximation (GPA), in which the uncertainty set $\mathcal{U}$ is substituted by a finite set of polytopes derived from the vertex set of an arbitrary polytope that dominates $\mathcal{U}$. The union of the polytopes need not contain $\mathcal{U}$. We analyse and … Read more

Finding Groups with Maximum Betweenness Centrality via Integer Programming with Random Path Sampling

One popular approach to access the importance/influence of a group of nodes in a network is based on the notion of centrality. For a given group, its group betweenness centrality is computed, first, by evaluating a ratio of shortest paths between each node pair in a network that are “covered” by at least one node … Read more

Worst-Case Analysis of Heuristic Approaches for the Temporal Bin Packing Problem with Fire-Ups

We consider the temporal bin packing problem with fire-ups (TBPP-FU), a branch of operations research recently introduced in multi-objective cloud computing. In this scenario, any item is equipped with a resource demand and a lifespan meaning that it requires the bin capacity only during that time interval. We then aim at finding a schedule minimizing … Read more