On the control of an evolutionary equilibrium in micromagnetics

We formulate an optimal control problem of magnetization in a ferromagnet as a mathematical program with evolutionary equilibrium constraints. The evolutionary nature of the equilibrium is due to the hysteresis behavior of the respective magnetization process. To solve the problem numerically, we adapted the implicit programming technique. The adjoint equations, needed to compute the subgradients … Read more

An Optimization Approach to Computing the Implied Volatility of American Options

We present a method to compute the implied volatility of American options as a mathematical program with equilibrium constraints. The formulation we present is new, as are the convergence results we prove. The algorithm holds the promise of being practical to implement, and we demonstrate some preliminary numerical results to this end. Citation Princeton University … Read more

Stochastic Mathematical Programs with Equilibrium Constraints, Modeling and Sample Average Approximation

In this paper, we discuss the sample average approximation (SAA) method applied to a class of stochastic mathematical programs with variational (equilibrium) constraints. To this end, we briefly investigate piecewise structure and directional differentiability of both — the lower level equilibrium solution and objective integrant. We show almost sure convergence of optimal values, optimal solutions … Read more

Lowner’s Operator and Spectral Functions in Euclidean Jordan Algebras

We study analyticity, differentiability, and semismoothness of Lowner’s operator and spectral functions under the framework of Euclidean Jordan algebras. In particular, we show that many optimization-related classical results in the symmetric matrix space can be generalized within this framework. For example, the metric projection operator over any symmetric cone defined in a Euclidean Jordan algebra … Read more

Interior Methods for Mathematical Programs with Complementarity Constraints

This paper studies theoretical and practical properties of interior-penalty methods for mathematical programs with complementarity constraints. A framework for implementing these methods is presented, and the need for adaptive penalty update strategies is motivated with examples. The algorithm is shown to be globally convergent to strongly stationary points, under standard assumptions. These results are then … Read more

Convergence Analysis of an Interior-Point Method for Mathematical Programs with Equilibrium Constraints

We prove local and global convergence results for an interior-point method applied to mathematical programs with equilibrium constraints. The global result shows the algorithm minimizes infeasibility regardless of starting point, while one result proves local convergence when penalty functions are exact; another local result proves convergence when the solution is not even a KKT point. … Read more

An Algorithm for Perturbed Second-order Cone Programs

The second-order cone programming problem is reformulated into several new systems of nonlinear equations. Assume the perturbation of the data is in a certain neighborhood of zero. Then starting from a solution to the old problem, the semismooth Newton’s iterates converge Q-quadratically to a solution of the perturbed problem. The algorithm is globalized. Numerical examples … Read more

The Q Method for Symmetric Cone Programming

We extend the Q method to the symmetric cone programming. An infeasible interior point algorithm and a Newton-type algorithm are given. We give convergence results of the interior point algorithm and prove that the Newton-type algorithm is good for Citation AdvOl-Report#2004/18 McMaster University, Advanced Optimization Laboratory Hamilton, Ontario, Canada October 2004 Article Download View The … Read more

Leader-Follower Equilibria for Electric Power and NO_x Allowances Markets

This paper investigates the ability of the largest producer in an electricity market to manipulate both the electricity and emission allowances markets to its advantage. A Stackelberg game to analyze this situation is constructed in which the largest firm plays the role of the leader, while the medium-sized firms are treated as Cournot followers with … Read more

Interior Point Trajectories and a Homogeneous Model for Nonlinear Complementarity Problems over Symmetric Cones

We study the continuous trajectories for solving monotone nonlinear mixed complementarity problems over symmetric cones. While the analysis in Faybusovich (1997) depends on the optimization theory of convex log-barrier functions, our approach is based on the paper of Monteiro and Pang (1998), where a vast set of conclusions concerning continuous trajectories is shown for monotone … Read more