Improved complexity for maximum volume inscribed ellipsoids

Let $\Pcal=\{x | Ax\le b\}$, where $A$ is an $m\times n$ matrix. We assume that $\Pcal$ contains a ball of radius one centered at the origin, and is contained in a ball of radius $R$ centered at the origin. We consider the problem of approximating the maximum volume ellipsoid inscribed in $\Pcal$. Such ellipsoids have … Read more

Variational Analysis of Non-Lipschitz Spectral Functions

We consider spectral functions $f \circ \lambda$, where $f$ is any permutation-invariant mapping from $\Cx^n$ to $\Rl$, and $\lambda$ is the eigenvalue map from the set of $n \times n$ complex matrices to $\Cx^n$, ordering the eigenvalues lexicographically. For example, if $f$ is the function “maximum real part CitationMath. Programming 90 (2001), pp. 317-352

Variational Analysis of the Abscissa Mapping for Polynomials

The abscissa mapping on the affine variety $M_n$ of monic polynomials of degree $n$ is the mapping that takes a monic polynomial to the maximum of the real parts of its roots. This mapping plays a central role in the stability theory of matrices and dynamical systems. It is well known that the abscissa mapping … Read more

Optimal Stability and Eigenvalue Multiplicity

We consider the problem of minimizing over an affine set of square matrices the maximum of the real parts of the eigenvalues. Such problems are prototypical in robust control and stability analysis. Under nondegeneracy conditions, we show that the multiplicities of the active eigenvalues at a critical matrix remain unchanged under small perturbations of the … Read more

Optimizing Matrix Stability

Given an affine subspace of square matrices, we consider the problem of minimizing the spectral abscissa (the largest real part of an eigenvalue). We give an example whose optimal solution has Jordan form consisting of a single Jordan block, and we show, using nonlipschitz variational analysis, that this behaviour persists under arbitrary small perturbations to … Read more

Approximating Subdifferentials by Random Sampling of Gradients

Many interesting real functions on Euclidean space are differentiable almost everywhere. All Lipschitz functions have this property, but so, for example, does the spectral abscissa of a matrix (a non-Lipschitz function). In practice, the gradient is often easy to compute. We investigate to what extent we can approximate the Clarke subdifferential of such a function … Read more

Multiple Cuts with a Homogeneous Analytic Center Cutting Plane Method

This paper analyzes the introduction of multiple central cuts in a conic formulation of the analytic center cutting plane method (in short ACCPM). This work extends earlier work on the homogeneous ACCPM, and parallels the analysis of the multiple cut process in the standard ACCPM. The main issue is the calculation of a direction that … Read more

Examples of ill-behaved central paths in convex optimization

This paper presents some examples of ill-behaved central paths in convex optimization. Some contain infinitely many fixed length central segments; others manifest oscillations with infinite variation. These central paths can be encountered even for infinitely differentiable data. CitationRapport de recherche 4179, INRIA, France, 2001ArticleDownload View PDF

An Attractor-Repeller Approach to Floorplanning

The floorplanning (or facility layout) problem consists in finding the optimal positions for a given set of modules of fixed area (but perhaps varying dimensions) within a facility such that the distances between pairs of modules that have a positive connection cost are minimized. This is a hard discrete optimization problem; even the restricted version … Read more