Dual Dynamic Programming with cut selection: convergence proof and numerical experiments

We consider convex optimization problems formulated using dynamic programming equations. Such problems can be solved using the Dual Dynamic Programming algorithm combined with the Level 1 cut selection strategy or the Territory algorithm to select the most relevant Benders cuts. We propose a limited memory variant of Level 1 and show the convergence of DDP … Read more

A New Use of Douglas-Rachford Splitting and ADMM for Identifying Infeasible, Unbounded, and Pathological Conic Programs

In this paper, we present a method for identifying infeasible, unbounded, and pathological conic programs based on Douglas-Rachford splitting, or equivalently ADMM. When an optimization program is infeasible, unbounded, or pathological, the iterates of Douglas-Rachford splitting diverge.Somewhat surprisingly, such divergent iterates still provide useful information, which our method uses for identification. In addition, for strongly … Read more

Oracle Complexity of Second-Order Methods for Smooth Convex Optimization

Second-order methods, which utilize gradients as well as Hessians to optimize a given function, are of major importance in mathematical optimization. In this work, we study the oracle complexity of such methods, or equivalently, the number of iterations required to optimize a function to a given accuracy. Focusing on smooth and convex functions, we derive … Read more

Iteration-complexity of a Jacobi-type non-Euclidean ADMM for multi-block linearly constrained nonconvex programs

This paper establishes the iteration-complexity of a Jacobi-type non-Euclidean proximal alternating direction method of multipliers (ADMM) for solving multi-block linearly constrained nonconvex programs. The subproblems of this ADMM variant can be solved in parallel and hence the method has great potential to solve large scale multi-block linearly constrained nonconvex programs. Moreover, our analysis allows the … Read more

Bad semidefinite programs with short proofs, and the closedness of the linear image of the semidefinite cone

Semidefinite programs (SDPs) — some of the most useful and pervasive optimization problems of the last few decades — often behave pathologically: the optimal values of the primal and dual problems may differ and may not be attained. Such SDPs are theoretically interesting and often impossible to solve. Yet, the pathological SDPs in the literature … Read more

An Investigation of Newton-Sketch and Subsampled Newton Methods

Sketching, a dimensionality reduction technique, has received much attention in the statistics community. In this paper, we study sketching in the context of Newton’s method for solving finite-sum optimization problems in which the number of variables and data points are both large. We study two forms of sketching that perform dimensionality reduction in data space: … Read more

Polynomial Norms

In this paper, we study polynomial norms, i.e. norms that are the dth root of a degree-d homogeneous polynomial f. We first show that a necessary and sufficient condition for f^(1/d) to be a norm is for f to be strictly convex, or equivalently, convex and positive definite. Though not all norms come from dth … Read more

Subdifferentiation and Smoothing of Nonsmooth Integral Functionals

The subdifferential calculus for the expectation of nonsmooth random integrands involves many fundamental and challenging problems in stochastic optimization. It is known that for Clarke regular integrands, the Clarke subdifferential equals the expectation of their Clarke subdifferential. In particular, this holds for convex integrands. However, little is known about calculation of Clarke subgradients for the … Read more

The Many Faces of Degeneracy in Conic Optimization

Slater’s condition — existence of a “strictly feasible solution” — is a common assumption in conic optimization. Without strict feasibility, first-order optimality conditions may be meaningless, the dual problem may yield little information about the primal, and small changes in the data may render the problem infeasible. Hence, failure of strict feasibility can negatively impact … Read more

On the pointwise iteration-complexity of a dynamic regularized ADMM with over-relaxation stepsize

In this paper, we extend the improved pointwise iteration-complexity result of a dynamic regularized alternating direction method of multipliers (ADMM) for a new stepsize domain. In this complexity analysis, the stepsize parameter can even be chosen in the interval $(0,2)$ instead of interval $(0,(1+\sqrt{5})/2)$. As usual, our analysis is established by interpreting this ADMM variant … Read more