A Riemannian AdaGrad-Norm Method

We propose a manifold AdaGrad-Norm method (\textsc{MAdaGrad}), which extends the norm version of AdaGrad (AdaGrad-Norm) to Riemannian optimization. In contrast to line-search schemes, which may require several exponential map computations per iteration, \textsc{MAdaGrad} requires only one. Assuming the objective function $f$ has Lipschitz continuous Riemannian gradient, we show that the method requires at most $\mathcal{O}(\varepsilon^{-2})$ … Read more

A relax-fix-and-exclude algorithm for an MINLP problem with multilinear interpolations

This paper introduces a novel algorithm for Mixed-Integer Nonlinear Programming (MINLP) problems with multilinear interpolations of look-up tables. These problems arise when objectives or constraints contain black-box functions only known at a finite set of evaluations on a predefined grid. We derive a piecewise-linear relaxation for the multilinear interpolants, which require an MINLP formulation. Supported … Read more

Deterministic global optimization with trained neural networks: Is the envelope of single neurons worth it?

Optimization problems containing trained neural networks remain challenging due to their nonconvexity. Deterministic global optimization relies on relaxations which should be tight, quickly convergent, and cheap to evaluate. While envelopes of common activation functions have been established for several years, the envelope of an entire neuron had not. Recently, Carrasco and Mu\~{n}oz (arXiv.2410.23362, 2024) proposed … Read more

New Algorithms for maximizing the difference of convex functions

Maximizing the difference of 2 convex functions over a convex feasible set (the so called DCA problem) is a hard problem. There is a large number of publications addressing this problem. Many of them are variations of widely used DCA algorithm [20]. The success of this algorithm to reach a good approximation of a global … Read more

Constructing QCQP Instances Equivalent to Their SDP Relaxations

General quadratically constrained quadratic programs (QCQPs) are challenging to solve as they are known to be NP-hard. A popular approach to approximating QCQP solutions is to use semidefinite programming (SDP) relaxations. It is well-known that the optimal value η of the SDP relaxation problem bounds the optimal value ζ  of the QCQP from below, i.e., … Read more

A graphical framework for global optimization of mixed-integer nonlinear programs

While mixed-integer linear programming and convex programming solvers have advanced significantly over the past several decades, solution technologies for general mixed-integer nonlinear programs (MINLPs) have yet to reach the same level of maturity. Various problem structures across different application domains remain challenging to model and solve using modern global solvers, primarily due to the lack … Read more

Globally Convergent Derivative-Free Methods in Nonconvex Optimization with and without Noise

This paper addresses the study of nonconvex derivative-free optimization problems, where only information of either smooth objective functions or their noisy approximations is available. General derivative-free methods are proposed for minimizing differentiable (not necessarily convex) functions with globally Lipschitz continuous gradients, where the accuracy of approximate gradients is interacting with stepsizes and exact gradient values. … Read more

BattOpt: Optimal Facility Planning for Electric Vehicle Battery Recycling

The electric vehicle (EV) battery supply chain will face challenges in sourcing scarce and expensive minerals required for manufacturing and in disposing of hazardous retired batteries. Integrating recycling technology into the supply chain has the potential to alleviate these issues; however, players in the battery market must design investment plans for recycling facilities. In this … Read more

Exploiting Sign Symmetries in Minimizing Sums of Rational Functions

This paper is devoted to the problem of minimizing a sum of rational functions over a basic semialgebraic set. We provide a hierarchy of sum of squares (SOS) relaxations that is dual to the generalized moment problem approach due to Bugarin, Henrion, and Lasserre. The investigation of the dual SOS aspect offers two benefits: 1) … Read more

Revisiting the fitting of the Nelson-Siegel and Svensson models

The Nelson-Siegel and the Svensson models are two of the most widely used models for the term structure of interest rates. Even though the models are quite simple and intuitive, fitting them to market data is numerically challenging and various difficulties have been reported. In this paper, a novel mathematical analysis of the fitting problem … Read more