The Least Singular Value Function in Variational Analysis

Metric regularity is among the central concepts of nonlinear and variational analysis, constrained optimization, and their numerous applications. However, met- ric regularity can be elusive for some important ill-posed classes of problems includ- ing polynomial equations, parametric variational systems, smooth reformulations of complementarity systems with degenerate solutions, etc. The study of stability issues for such … Read more

New Sufficient and Necessary Conditions for Constrained and Unconstrained Lipschitzian Error Bounds

Local error bounds play a fundamental role in mathematical programming and variational analysis. They are used e.g. as constraint qualifications in optimization, in developing calculus rules for generalized derivatives in nonsmooth and set-valued analysis, and they serve as a key ingredient in the design and convergence analysis of Newton-type methods for solving systems of possibly … Read more

On Sum-Rules for Second-Order Contingent Derivatives

We are concerned with contingent derivatives and their second-order counterparts (introduced by Ngai et al.) of set-valued mappings. Special attention is given to the development of new sum-rules for second-order contingent derivatives. To be precise, we want to find conditions under which the second-order contingent derivative of the sum of a smooth and a set-valued … Read more

Extended Triangle Inequalities for Nonconvex Box-Constrained Quadratic Programming

Let Box_n = {x in R^n : 0<= x <= e }, and let QPB_n denote the convex hull of {(1, x’)'(1, x’) : x  in Box_n}. The quadratic programming problem min{x’Q x + q’x : x in Box_n} where Q is not positive semidefinite (PSD), is equivalent to a linear optimization problem over QPB_n … Read more

Sparse Polynomial Matrix Optimization

A polynomial matrix inequality is a statement that a symmetric polynomial matrix is positive semidefinite over a given constraint set. Polynomial matrix optimization concerns minimizing the smallest eigenvalue of a symmetric polynomial matrix subject to a tuple of polynomial matrix inequalities. This work explores the use of sparsity methods in reducing the complexity of sum-of-squares … Read more

Global Optimization Algorithm through High-Resolution Sampling

We present an optimization algorithm that can identify a global minimum of a potentially nonconvex smooth function with high probability, assuming the Gibbs measure of the potential satisfies a logarithmic Sobolev inequality. Our contribution is twofold: on the one hand we propose a global optimization method, which is built on an oracle sampling algorithm producing … Read more

A graphical framework for global optimization of mixed-integer nonlinear programs

While mixed-integer linear programming and convex programming solvers have advanced significantly over the past several decades, solution technologies for general mixed-integer nonlinear programs (MINLPs) have yet to reach the same level of maturity. Various problem structures across different application domains remain challenging to model and solve using modern global solvers, primarily due to the lack … Read more

An Adaptive Proximal ADMM for Nonconvex Linearly-Constrained Composite Programs

This paper develops an adaptive Proximal Alternating Direction Method of Multipliers (P-ADMM) for solving linearly-constrained, weakly convex, composite optimization problems. This method is adaptive to all problem parameters, including smoothness and weak convexity constants. It is assumed that the smooth component of the objective is weakly convex and possibly nonseparable, while the non-smooth component is … Read more

Regularized Gradient Clipping Provably Trains Wide and Deep Neural Networks

In this work, we instantiate a regularized form of the gradient clipping algorithm and prove that it can converge to the global minima of deep neural network loss functions provided that the net is of sufficient width. We present empirical evidence that our theoretically founded regularized gradient clipping algorithm is also competitive with the state-of-the-art … Read more

Strengthening Lasserre’s Hierarchy in Real and Complex Polynomial Optimization

We establish a connection between multiplication operators and shift operators. Moreover, we derive positive semidefinite conditions of finite rank moment sequences and use these conditions to strengthen Lasserre’s hierarchy for real and complex polynomial optimization. Integration of the strengthening technique with sparsity is considered. Extensive numerical experiments show that our strengthening technique can significantly improve … Read more