Optimal distance separating halfspace

One recently proposed criterion to separate two datasets in discriminant analysis, is to use a hyperplane which minimises the sum of distances to it from all the misclassified data points. Here all distances are supposed to be measured by way of some fixed norm,while misclassification means lying on the wrong side of the hyperplane, or … Read more

Optimal expected-distance separating halfspace

One recently proposed criterion to separate two datasets in discriminant analysis, is to use a hyperplane which minimises the sum of distances to it from all the misclassified data points. Here all distances are supposed to be measured by way of some fixed norm, while misclassification means lying on the wrong side of the hyperplane, … Read more

A Piecewise Linearization Framework for Retail Shelf Space Management Models

Managing shelf space is critical for retailers to attract customers and to optimize profit. This paper develops a shelf space allocation optimization model that explicitly incorporates essential in-store costs and considers space- and cross-elasticities. The resultant model maximizes a signomial objective function over linear and bilinear constraints in mixed-integer variables. We propose a piecewise linearization … Read more

A Branch-Reduce-Cut Algorithm for the Global Optimization of Probabilistically Constrained Linear Programs

We consider probabilistic constrained linear programs with general distributions for the uncertain parameters. These problems generally involve non-convex feasible sets. We develop a branch and bound algorithm that searches for a global solution to this problem by successively partitioning the non-convex feasible region and by using bounds on the objective function to fathom inferior partitions. … Read more

Constrained Global Optimization with Radial Basis Functions

Response surface methods show promising results for global optimization of costly non convex objective functions, i.e. the problem of finding the global minimum when there are several local minima and each function value takes considerable CPU time to compute. Such problems often arise in industrial and financial applications, where a function value could be a … Read more

Convergence Analysis of the DIRECT Algorithm

The DIRECT algorithm is a deterministic sampling method for bound constrained Lipschitz continuous optimization. We prove a subsequential convergence result for the DIRECT algorithm that quantifies some of the convergence observations in the literature. Our results apply to several variations on the original method, including one that will handle general constraints. We use techniques from … Read more

A Trust-Region Algorithm for Global Optimization

We consider the global minimization of a bound-constrained function with a so-called funnel structure. We develop a two-phase procedure that uses sampling, local optimization, and Gaussian smoothing to construct a smooth model of the underlying funnel. The procedure is embedded in a trust-region framework that avoids the pitfalls of a fixed sampling radius. We present … Read more

Fuzzy Modeling with Adaptive Simulated Annealing

A new method for data-based fuzzy system modeling is presented. The approach uses Takagi-Sugeno models and Adaptive Simulated Annealing (ASA) to achieve its goal . The problem to solve is well defined – given a training set containing a finite number of input-output pairs, construct a fuzzy system that approximates the behavior of the real … Read more

A Global Optimization Problem in Portfolio Selection

This paper deals with the issue of buy-in thresholds in portfolio optimization using the Markowitz approach. Optimal values of invested fractions calculated using, for instance, the classical minimum-risk problem can be unsatisfactory in practice because they imply that very small amounts of certain assets are purchased. Realistically, we want to impose a disjoint restriction so … Read more