A Successive Linear Relaxation Method for MINLPs with Multivariate Lipschitz Continuous Nonlinearities

We present a novel method for mixed-integer optimization problems with multivariate and Lipschitz continuous nonlinearities. In particular, we do not assume that the nonlinear constraints are explicitly given but that we can only evaluate them and that we know their global Lipschitz constants. The algorithm is a successive linear relaxation method in which we alternate … Read more

A Strengthened SDP Relaxation for Quadratic Optimization Over the Stiefel Manifold

We study semidefinite programming (SDP) relaxations for the NP-hard problem of globally optimizing a quadratic function over the Stiefel manifold. We introduce a strengthened relaxation based on two recent ideas in the literature: (i) a tailored SDP for objectives with a block-diagonal Hessian; (ii) and the use of the Kronecker matrix product to construct SDP relaxations. Using synthetic instances on … Read more

Multilinear formulations for computing Nash equilibrium of multi-player matrix games

We present multilinear and mixed-integer multilinear programs to find a Nash equilibrium in multi-player strategic-form games. We compare the formulations to common algorithms in Gambit, and conclude that a multilinear feasibility program finds a Nash equilibrium faster than any of the methods we compare it to, including the quantal response equilibrium method, which is recommended … Read more

Relaxations and Cutting Planes for Linear Programs with Complementarity Constraints

We study relaxations for linear programs with complementarity constraints, especially instances whose complementary pairs of variables are not independent. Our formulation is based on identifying vertex covers of the conflict graph of the instance and generalizes the extended reformulation-linearization technique of Nguyen, Richard, and Tawarmalani to instances with general complementarity conditions between variables. We demonstrate … Read more

Recursive McCormick Linearization of Multilinear Programs

Linear programming (LP) relaxations are widely employed in exact solution methods for multilinear programs (MLP). One example is the family of Recursive McCormick Linearization (RML) strategies, where bilinear products are substituted for artificial variables, which deliver a relaxation of the original problem when introduced together with concave and convex envelopes. In this article, we introduce … Read more

Certifying Global Optimality of AC-OPF Solutions via sparse polynomial optimization

We report the experimental results on certifying 1% global optimality of solutions of AC-OPF instances from PGLiB via the CS-TSSOS hierarchy — a moment-SOS based hierarchy that exploits both correlative and term sparsity, which can provide tighter SDP relaxations than Shor’s relaxation. Our numerical experiments demonstrate that the CS-TSSOS hierarchy scales well with the problem … Read more

Piecewise Polyhedral Relaxations of Multilinear Optimization

In this paper, we consider piecewise polyhedral relaxations (PPRs) of multilinear optimization problems over axis-parallel hyper-rectangular partitions of their domain. We improve formulations for PPRs by linking components that are commonly modeled independently in the literature. Numerical experiments with ALPINE, an open-source software for global optimization that relies on piecewise approximations of functions, show that … Read more

A combined model for chain expansion including the possibility of locating a new facility and modification and/or closing of existing facilities

The problem of an expanding chain (it already has some facilities) in a given area is considered. It may locate a new facility, or vary (up or down) the quality of its existing facilities, or close some of them, or a combination of all those possibilities, whatever it is the best to maximize its profit, … Read more

A Survey on Bilevel Optimization Under Uncertainty

Bilevel optimization is a very active field of applied mathematics. The main reason is that bilevel optimization problems can serve as a powerful tool for modeling hierarchical decision making processes. This ability, however, also makes the resulting problems challenging to solve—both in theory and practice. Fortunately, there have been significant algorithmic advances in the field … Read more

Small polygons with large area

A polygon is {\em small} if it has unit diameter. The maximal area of a small polygon with a fixed number of sides $n$ is not known when $n$ is even and $n\geq14$. We determine an improved lower bound for the maximal area of a small $n$-gon for this case. The improvement affects the $1/n^3$ … Read more