Evolving Scientific Discovery by Unifying Data and Background Knowledge with AI Hilbert

The discovery of scientific formulae that parsimoniously explain natural phenomena and align with existing background theory is a key goal in science. Historically, scientists have derived natural laws by manipulating equations based on existing knowledge, forming new equations, and verifying them experimentally. In recent years, data-driven scientific discovery has emerged as a viable competitor in … Read more

Further Development in Convex Conic Reformulation of Geometric Nonconvex Conic Optimization Problems

A geometric nonconvex conic optimization problem (COP) was recently proposed by Kim, Kojima and Toh asa unified framework for convex conic reformulation of a class of quadratic optimization problems and polynomial optimization problems. The nonconvex COP minimizes a linear function over the intersection of a nonconvex cone K, a convex subcone J of the convex … Read more

A more efficient reformulation of complex SDP as real SDP

This note proposes a new reformulation of complex semidefinite programs (SDPs) as real SDPs. As an application, we present an economical reformulation of complex SDP relaxations of complex polynomial optimization problems as real SDPs and derive some further reductions by exploiting inner structure of the complex SDP relaxations. Various numerical examples demonstrate that our new … Read more

Cutting planes from the simplex tableau for quadratically constrained optimization problems

We describe a method to generate cutting planes for quadratically constrained optimization problems. The method uses information from the simplex tableau of a linear relaxation of the problem in combination with McCormick estimators. The method is guaranteed to cut off a basic feasible solution of the linear relaxation that violates the quadratic constraints in the … Read more

Diagonal Partitioning Strategy Using Bisection of Rectangles and a Novel Sampling Scheme

In this paper we consider a global optimization problem, where the objective function is supposed to be Lipschitz-continuous with an unknown Lipschitz constant. Based on the recently introduced BIRECT (BIsection of RECTangles) algorithm, a new diagonal partitioning and sampling scheme is introduced. 0ur framework, called BIRECT-V (where V stands for vertices), combines bisection with sampling … Read more

A novel UCB-based batch strategy for Bayesian optimization

The optimization of expensive black-box functions appears in many situations. Bayesian optimization methods have been successfully applied to solve these prob- lems using well-known single-point acquisition functions. Nowadays, the develop- ments in technology allow us to perform evaluations of some of these expensive function in parallel. Therefore, there is a need for batch infill criteria … Read more

A novel algorithm for a broad class of nonconvex optimization problems

In this paper, we propose a new global optimization approach for solving nonconvex optimization problems in which the nonconvex components are sums of products of convex functions. A broad class of nonconvex problems can be written in this way, such as concave minimization problems, difference of convex problems, and fractional optimization problems. Our approach exploits … Read more

Asynchronous Iterations in Optimization: New Sequence Results and Sharper Algorithmic Guarantees

We introduce novel convergence results for asynchronous iterations that appear in the analysis of parallel and distributed optimization algorithms. The results are simple to apply and give explicit estimates for how the degree of asynchrony impacts the convergence rates of the iterates. Our results shorten, streamline and strengthen existing convergence proofs for several asynchronous optimization … Read more

A Moment-SOS Hierarchy for Robust Polynomial Matrix Inequality Optimization with SOS-Convexity

We study a class of polynomial optimization problems with a robust polynomial matrix inequality constraint for which the uncertainty set is defined also by a polynomial matrix inequality (including robust polynomial semidefinite programs as a special case). Under certain SOS-convexity assumptions, we construct a hierarchy of moment-SOS relaxations for this problem to obtain convergent upper … Read more