Lecture notes: Semidefinite programs and harmonic analysis

Lecture notes for the tutorial at the workshop HPOPT 2008 – 10th International Workshop on High Performance Optimization Techniques (Algebraic Structure in Semidefinite Programming), June 11th to 13th, 2008, Tilburg University, The Netherlands. CitationarXiv:0809.2017v1 [math.OC]ArticleDownload View PDF

Semi-infinite programming, duality, discretization and optimality conditions

The aim of this paper is to give a survey of some basic theory of semi-infinite programming. In particular, we discuss various approaches to derivations of duality, discretization and first and second order optimality conditions. Some of the surveyed results are well known while others seem to be less noticed in that area of research. … Read more

Numerical Experience with a Recursive Trust-Region Method for Multilevel Nonlinear Optimization

We consider an implementation of the recursive multilevel trust-region algorithm proposed by Gratton, Mouffe, Toint, Weber (2008) for bound-constrained nonlinear problems, and provide numerical experience on multilevel test problems. A suitable choice of the algorithm’s parameters is identified on these problems, yielding a satisfactory compromise between reliability and efficiency. The resulting default algorithm is then … Read more

A Matrix-free Algorithm for Equality Constrained Optimization Problems with Rank-deficient Jacobians

We present a line search algorithm for large-scale constrained optimization that is robust and efficient even for problems with (nearly) rank-deficient Jacobian matrices. The method is matrix-free (i.e., it does not require explicit storage or factorizations of derivative matrices), allows for inexact step computations, and is applicable for nonconvex problems. The main components of the … Read more

An information-based approximation scheme for stochastic optimization problems in continuous time

Dynamic stochastic optimization problems with a large (possibly infinite) number of decision stages and high-dimensional state vector are inherently difficult to solve. In fact, scenario tree based algorithms are unsuitable for problems with many stages, while dynamic programming type techniques are unsuitable for problems with many state variables. This article proposes a stage aggregation scheme … Read more

Duality of ellipsoidal approximations via semi-infinite programming

In this work, we develop duality of the minimum volume circumscribed ellipsoid and the maximum volume inscribed ellipsoid problems. We present a unified treatment of both problems using convex semi–infinite programming. We establish the known duality relationship between the minimum volume circumscribed ellipsoid problem and the optimal experimental design problem in statistics. The duality results … Read more

Convergent Network Approximation for the Continuous Euclidean Length Constrained Minimum Cost Path Problem

In many path planning situations we would like to find a path of constrained Euclidean length in 2D that minimises a line integral. We call this the Continuous Length-Constrained Minimum Cost Path Problem (C-LCMCPP). Generally, this will be a non-convex optimization problem, for which continuous approaches only ensure locally optimal solutions. However, network discretisations yield … Read more

A multilevel algorithm for solving the trust-region subproblem

We present a multilevel numerical algorithm for the exact solution of the Euclidean trust-region subproblem. This particular subproblem typically arises when optimizing a nonlinear (possibly non-convex) objective function whose variables are discretized continuous functions, in which case the different levels of discretization provide a natural multilevel context. The trust-region problem is considered at the highest … Read more

The extremal volume ellipsoids of convex bodies, their symmetry properties, and their determination in some special cases

A convex body K has associated with it a unique circumscribed ellipsoid CE(K) with minimum volume, and a unique inscribed ellipsoid IE(K) with maximum volume. We first give a unified, modern exposition of the basic theory of these extremal ellipsoids using the semi-infinite programming approach pioneered by Fritz John in his seminal 1948 paper. We … Read more

The Exact Feasibility of Randomized Solutions of Robust Convex Programs

Robust optimization programs are hard to solve even when the constraints are convex. In previous contributions, it has been shown that approximately robust solutions (i.e. solutions feasible for all constraints but a small fraction of them) to convex programs can be obtained at low computational cost through constraints randomization. In this paper, we establish new … Read more