DC programming approach for solving a class of bilevel partial facility interdiction problems

We propose a new approach based DC programming for fnding a solution of the partial facility interdiction problem that belongs to the class of bilevel programming. This model was frst considered in the work of Aksen et al. [1] with a heuristic algorithm named multi-start simplex search (MSS). However, because of the big number of … Read more

Solving the Traveling Telescope Problem with Mixed Integer Linear Programming

The size and complexity of modern astronomical surveys has grown to the point where, in many cases, traditional human scheduling of observations is tedious at best and impractical at worst. Automated scheduling algorithms present an opportunity to save human effort and increase scientific productivity. A common scheduling challenge involves determining the optimal ordering of a … Read more

An enhanced mathematical model for optimal simultaneous preventive maintenance scheduling and workshop planning

For a system to stay operational, maintenance of its components is required and to maximize the operational readiness of a system, preventive maintenance planning is essential. There are two stakeholders—a system operator and a maintenance workshop—and a contract regulating their joint activities. Each contract leads to a bi-objective optimization problem. Components that require maintenance are … Read more

Column Generation in Column-and-Constraint Generation for Adjustable Robust Optimization with Interdiction-Type Linking Constraints

Adjustable robust optimization (ARO) is a powerful tool to model problems that have uncertain data and that feature a two-stage decision-making process. Computationally, they are often addressed using the column-and-constraint generation (CCG) algorithm introduced by Zeng and Zhao (2013). While it was empirically shown that the algorithm scales well if all second-stage decisions are continuous, … Read more

A novel Pareto-optimal cut selection strategy for Benders Decomposition

Decomposition methods can be used to create efficient solution algorithms for a wide range of optimization problems. For example, Benders Decomposition can be used to solve scenario-expanded two-stage stochastic optimization problems effectively. Benders Decomposition iteratively generates Benders cuts by solving a simplified version of an optimization problem, the so-called subproblem. The choice of the generated … Read more

Resilient Relay Logistics Network Design: A k-Shortest Path Approach

Problem definition: We study the problem of designing large-scale resilient relay logistics hub networks. We propose a model of k-Shortest Path Network Design, which aims to improve a network’s efficiency and resilience through its topological configuration, by locating relay logistics hubs to connect each origin-destination pair with k paths of minimum lengths, weighted by their … Read more

PaPILO: A Parallel Presolving Library for Integer and Linear Optimization with Multiprecision Support

Presolving has become an essential component of modern MIP solvers both in terms of computational performance and numerical robustness. In this paper we present PaPILO (https://github.com/scipopt/papilo), a new C++ header-only library that provides a large set of presolving routines for MIP and LP problems from the literature. The creation of \papilo was motivated by the … Read more

ODTlearn: A Package for Learning Optimal Decision Trees for Prediction and Prescription

ODTLearn is an open-source Python package that provides methods for learning optimal decision trees for high-stakes predictive and prescriptive tasks based on the mixed-integer optimization (MIO) framework proposed in Aghaei et al. (2019) and several of its extensions. The current version of the package provides implementations for learning optimal classification trees, optimal fair classification trees, … Read more

Dual Conflict Analysis for Mixed-Integer Semidefinite Programs

Conflict analysis originally tried to exploit the knowledge that certain nodes in a relaxation-based branch-and-bound are infeasible. It has been extended to derive valid constraints also from feasible nodes. This paper adapts this approach to mixed-integer semidefinite programs. Using dual solutions, the primal constraints are aggregated and the resulting inequalities can be used at different … Read more

A Tutorial on Solving Single-Leader-Multi-Follower Problems using SOS1 Reformulations

In this tutorial we consider single-leader-multi-follower games in which the models of the lower-level players have polyhedral feasible sets and convex objective functions. This situation allows for classic KKT reformulations of the separate lower-level problems, which lead to challenging single-level reformulations of MPCC type. The main contribution of this tutorial is to present a ready-to-use … Read more