The Surprising Performance of Random Partial Benders Decomposition

Benders decomposition is a technique to solve large-scale mixed-integer optimization problems by decomposing them into a pure-integer master problem and a continuous separation subproblem. To accelerate convergence, we propose Random Partial Benders Decomposition (RPBD), a decomposition method that randomly retains a subset of the continuous variables within the master problem. Unlike existing problem-specific approaches, RPBD … Read more

Discovering Heuristics with Large Language Models (LLMs) for Mixed-Integer Programs: Single-Machine Scheduling

TitleDiscovering Heuristics with Large Language Models (LLMs) for Mixed-Integer Programs: Single-Machine Scheduling Authorsİbrahim Oğuz Çetinkaya^1; İ. Esra Büyüktahtakın^1*; Parshin Shojaee^2; Chandan K. Reddy^2 Affiliations^1 Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA^2 Department of Computer Science, Virginia Tech, Arlington, VA, USA Abstract: Our study contributes to the scheduling and combinatorial optimization … Read more

Optimizing Expeditionary Logistics: Dynamic Discretization for Fleet Management

We introduce the Expeditionary Logistics Network Design Problem (ELNDP), a new formulation for operational-level planning in expeditionary environments where multi-modal vehicle coordination is critical and penalties for unmet demand dominate transportation costs. ELNDP extends the classical Scheduled Service Network Design Problem by incorporating flexible commodity sourcing and heterogeneous vehicle capabilities, both essential in military logistics. … Read more

Extracting Alternative Solutions from Benders Decomposition

We show how to extract alternative solutions for optimization problems solved by Benders Decom- position. In practice, alternative solutions provide useful insights for complex applications; some solvers do support generation of alternative solutions but none appear to support such generation when using Benders Decomposition. We propose a new post-processing method that extracts multiple optimal and … Read more

What is the Best Way to Do Something? A Discreet Tour of Discrete Optimization

In mathematical optimization, we want to find the best possible solution for a decision-making problem. Curiously, these problems are harder to solve if they have discrete decisions. Imagine that you would like to buy chocolate: you can buy no chocolate or one chocolate bar, but typically you cannot buy just half of a bar. Now … Read more

Integrated Bus Fleet Electrification Planning Through Accelerated Logic-Based Benders Decomposition and Restriction Heuristics

To meet sustainability goals and regulatory requirements, transit agencies worldwide are planning partial and complete transitions to electric bus fleets. This paper presents the first comprehensive and computationally efficient multi-period optimization framework integrating the key planning decisions necessary to support such electrification initiatives. Our model, formulated as a two-stage integer program with integer subproblems, jointly … Read more

Solving the Partial Inverse Knapsack Problem

In this paper, we investigate the partial inverse knapsack problem, a bilevel optimization problem in which the follower solves a classical 0/1-knapsack problem with item profit values comprised of a fixed part and a modification determined by the leader. Specifically, the leader problem seeks a minimal change to given item profits such that there is … Read more

An exact approach for the Train Single-Routing Selection Problem

Given a set of train routes with route costs and a set of compatible route pairs with pairing costs, the Train Single-Routing Selection Problem (TSRSP) seeks to assign one route to each train, minimizing the total cost while ensuring pairwise compatibility among the selected routes. This problem is of significant practical relevance in rail traffic … Read more

The Minimization of the Weighted Completion Time Variance in a Single Machine: A Specialized Cutting-Plane Approach

This study addresses the problem of minimizing the weighted completion time variance (WCTV) in single-machine scheduling. Unlike the unweighted version, which has been extensively studied, the weighted variant introduces unique challenges due to the absence of theoretical properties that could guide the design of efficient algorithms. We propose a mathematical programming framework based on a … Read more