Optimal Sports League Realignment

We consider approaches for optimally organizing competitive sports leagues in light of competitive and logistical considerations. A common objective is to assign teams to divisions so that intradivisional travel is minimized. We present a bilinear programming formulation based on k-way equipartitioning, and show how this formulation can be extended to account for additional constraints and … Read more

Considering homeowner acceptance of retrofit measures within energy supply network optimization

A key factor towards a low-carbon society is energy efficient heating of private houses. The choice of heating technology as well as the decision for certain energy-efficient house renovations are made mainly by individual homeowners. In contrast, municipal energy network planning heavily depends on and strongly affects these decisions. Further, there are different conflicting objectives … Read more

Detecting and Handling Reflection Symmetries in Mixed-Integer (Nonlinear) Programming

Symmetries in mixed-integer (nonlinear) programs (MINLP), if not handled appropriately, are known to negatively impact the performance of (spatial) branch-and-bound algorithms. Usually one thus tries to remove symmetries from the problem formulation or is relying on a solver that automatically detects and handles symmetries. While modelers of a problem can handle various kinds of symmetries, … Read more

A Clustering-based uncertainty set for Robust Optimization

Robust optimization is an approach for handling uncertainty in optimization problems, in which the uncertainty set determines the conservativeness of the solutions. In this paper, we propose a data-driven uncertainty set using a type of volume-based clustering, which we call Minimum-Volume Norm-Based Clustering (MVNBC). MVNBC extends the concept of minimum-volume ellipsoid clustering by allowing clusters … Read more

A Parametric Approach for Solving Convex Quadratic Optimization with Indicators Over Trees

This paper investigates convex quadratic optimization problems involving $n$ indicator variables, each associated with a continuous variable, particularly focusing on scenarios where the matrix $Q$ defining the quadratic term is positive definite and its sparsity pattern corresponds to the adjacency matrix of a tree graph. We introduce a graph-based dynamic programming algorithm that solves this … Read more

A Sequential Benders-based Mixed-Integer Quadratic Programming Algorithm

For continuous decision spaces, nonlinear programs (NLPs) can be efficiently solved via sequential quadratic programming (SQP) and, more generally, sequential convex programming (SCP). These algorithms linearize only the nonlinear equality constraints and keep the outer convex structure of the problem intact, such as (conic) inequality constraints or convex objective terms. The aim of the presented … Read more

Polyhedral Analysis of Quadratic Optimization Problems with Stieltjes Matrices and Indicators

In this paper, we consider convex quadratic optimization problems with indicators on the continuous variables. In particular, we assume that the Hessian of the quadratic term is a Stieltjes matrix, which naturally appears in sparse graphical inference problems and others. We describe an explicit convex formulation for the problem by studying the Stieltjes polyhedron arising … Read more

Adjustable Robust Nonlinear Network Design Without Controllable Elements under Load Scenario Uncertainties

We study network design problems for nonlinear and nonconvex flow models without controllable elements under load scenario uncertainties, i.e., under uncertain injections and withdrawals. To this end, we apply the concept of adjustable robust optimization to compute a network design that admits a feasible transport for all, possibly infinitely many, load scenarios within a given … Read more

Using Disjunctive Cuts in a Branch-and-Cut Method to Solve Convex Integer Nonlinear Bilevel Problems

We present a branch-and-cut method for solving convex integer nonlinear bilevel problems, i.e., bilevel models with nonlinear but jointly convex objective functions and constraints in both the upper and the lower level. To this end, we generalize the idea of using disjunctive cuts to cut off integer-feasible but bilevel-infeasible points. These cuts can be obtained … Read more

Neur2BiLO: Neural Bilevel Optimization

Bilevel optimization deals with nested problems in which a leader takes the first decision to minimize their objective function while accounting for a follower best-response reaction. Constrained bilevel problems with integer variables are particularly notorious for their hardness.  While exact solvers have been proposed for mixed-integer~linear bilevel optimization, they tend to scale poorly with problem … Read more