Variable Selection for Kernel Two-Sample Tests

We consider the variable selection problem for two-sample tests, aiming to select the most informative variables to distinguish samples from two groups. To solve this problem, we propose a framework based on the kernel maximum mean discrepancy (MMD). Our approach seeks a group of variables with a pre-specified size that maximizes the variance-regularized MMD statistics. … Read more

A classification method based on a cloud of spheres

\(\) In this article we propose a binary classification model to distinguish a specific class that corresponds to a characteristic that we intend to identify (fraud, spam, disease). The classification model is based on a cloud of spheres that circumscribes the points of the class to be identified. It is intended to build a model … Read more

Enhancements of Discretization Approaches for Non-Convex Mixed-Integer Quadratically Constraint Quadratic Programming: Part II

Abstract. This is Part II of a study on mixed-integer programming (MIP) relaxation techniques for the solution of non-convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We set the focus on MIP relaxation methods for non-convex continuous variable products and extend the well-known MIP relaxation normalized multiparametric disaggregation technique (NMDT), applying a sophisticated discretization to both … Read more

Gas Transport Network Optimization: Mixed-Integer Nonlinear Models

Although modern societies strive towards energy systems that are entirely based on renewable energy carriers, natural gas is still one of the most important energy sources. This became even more obvious in Europe with Russia’s 2022 war against the Ukraine and the resulting stop of gas supplies from Russia. Besides that it is very important … Read more

Tightening Quadratic Convex Relaxations for the AC Optimal Transmission Switching Problem

The Alternating Current Optimal Transmission Switching (ACOTS) problem incorporates line switching decisions into the fundamental AC optimal power flow (ACOPF) problem. The advantages of the ACOTS problem are well-known in terms of reducing the operational cost and improving system reliability. ACOTS optimization models contain discrete variables and nonlinear, non-convex constraints, which make it difficult to … Read more

Global Optimization of Mixed-Integer Nonlinear Programs with SCIP 8.0

For over ten years, the constraint integer programming framework SCIP has been extended by capabilities for the solution of convex and nonconvex mixed-integer nonlinear programs (MINLPs). With the recently published version 8.0, these capabilities have been largely reworked and extended. This paper discusses the motivations for recent changes and provides an overview of features that … Read more

A Branch and Bound Algorithm for Biobjective Mixed Integer Quadratic Programs

Multiobjective quadratic programs (MOQPs) are appealing since convex quadratic programs have elegant mathematical properties and model important applications. Adding mixed-integer variables extends their applicability while the resulting programs become global optimization problems. We design and implement a branch and bound (BB) algorithm for biobjective mixed-integer quadratic programs (BOMIQPs). In contrast to the existing algorithms in … Read more

Handling Symmetries in Mixed-Integer Semidefinite Programs

Symmetry handling is a key technique for reducing the running time of branch-and-bound methods for solving mixed-integer linear programs. In this paper, we generalize the notion of (permutation) symmetries to mixed-integer semidefinite programs (MISDPs). We first discuss how symmetries of MISDPs can be automatically detected by finding automorphisms of a suitably colored auxiliary graph. Then … Read more

A Voronoi-Based Mixed-Integer Gauss-Newton Algorithm for MINLP Arising in Optimal Control

We present a new algorithm for addressing nonconvex Mixed-Integer Nonlinear Programs (MINLPs) where the cost function is of nonlinear least squares form. We exploit this structure by leveraging a Gauss-Newton quadratic approximation of the original MINLP, leading to the formulation of a Mixed-Integer Quadratic Program (MIQP), which can be solved efficiently. The integer solution of the … Read more

On Constrained Mixed-Integer DR-Submodular Minimization

DR-submodular functions encompass a broad class of functions which are generally non-convex and non-concave. We study the problem of minimizing any DR-submodular function, with continuous and general integer variables, under box constraints and possibly additional monotonicity constraints. We propose valid linear inequalities for the epigraph of any DR-submodular function under the constraints. We further provide … Read more