Mixed-Integer Optimal Control Problems with switching costs: A shortest path approach

We investigate an extension of Mixed-Integer Optimal Control Problems (MIOCPs) by adding switching costs, which enables the penalization of chattering and extends current modeling capabilities. The decomposition approach, consisting of solving a partial outer convexification to obtain a relaxed solution and using rounding schemes to obtain a discrete-valued control can still be applied, but the … Read more

Learning Generalized Strong Branching for Set Covering, Set Packing, and 0-1 Knapsack Problems

Branching on a set of variables, rather than on a single variable, can give tighter bounds at the child nodes and can result in smaller search trees. However, selecting a good set of variables to branch on is even more challenging than selecting a good single variable to branch on. Generalized strong branching extends the … Read more

Quantum Bridge Analytics II: Network Optimization and Combinatorial Chaining for Asset Exchange

Quantum Bridge Analytics relates to methods and systems for hybrid classical-quantum computing, and is devoted to developing tools for bridging classical and quantum computing to gain the benefits of their alliance in the present and enable enhanced practical application of quantum computing in the future. This is the second of a two-part tutorial that surveys … Read more

A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflict Graph

We study the Knapsack Problem with Conflict Graph (KPCG), a generalization of the Knapsack Problem in which a conflict graph specifies pairs of items (vertices of the graph) which cannot be simultaneously selected in a solution. The KPCG asks for determining a maximum-profit subset of items of total weight no larger than the knapsack capacity … Read more

Autonomous traffic at intersections: an optimization-based analysis of possible time, energy, and CO2 savings

In the growing field of autonomous driving, traffic-light controlled intersections as the nodes of large traffic networks are of special interest. We want to analyze how much an optimized coordination of vehicles and infrastructure can contribute to a more efficient transit through these bottlenecks. In addition, we are interested in sensitivity of the results with … Read more

Integer packing sets form a well-quasi-ordering

An integer packing set is a set of non-negative integer vectors with the property that, if a vector x is in the set, then every non-negative integer vector y with y ≤ x is in the set as well. Integer packing sets appear naturally in Integer Optimization. In fact, the set of integer points in … Read more

A Finitely Convergent Disjunctive Cutting Plane Algorithm for Bilinear Programming

\(\) In this paper we present and analyze a finitely-convergent disjunctive cutting plane algorithm to obtain an \(\epsilon\)-optimal solution or detect infeasibility of a general nonconvex continuous bilinear program. While the cutting planes are obtained in a manner similar to Saxena, Bonami, and Lee [Math. Prog. 130: 359–413, 2011] and Fampa and Lee [J. Global … Read more

Sequential Convexification of a Bilinear Set

We present a sequential convexification procedure to derive, in the limit, a set arbitrary close to the convex hull of $\epsilon$-feasible solutions to a general nonconvex continuous bilinear set. Recognizing that bilinear terms can be represented with a finite number nonlinear nonconvex constraints in the lifted matrix space, our procedure performs a sequential convexification with … Read more

A Branch-and-Price Algorithm for the Minimum Sum Coloring Problem

A proper coloring of a given graph is an assignment of colors (integer numbers) to its vertices such that two adjacent vertices receives di different colors. This paper studies the Minimum Sum Coloring Problem (MSCP), which asks for fi nding a proper coloring while minimizing the sum of the colors assigned to the vertices. This paper presents … Read more