Routing and Wavelength Assignment with Protection: A Quadratic Unconstrained Binary Optimization Approach

The routing and wavelength assignment with protection is an important problem in telecommunications. Given an optical network and incoming connection requests, a commonly studied variant of the problem aims to grant maximum number of requests by assigning lightpaths at minimum network resource usage level, while ensuring the provided services remain functional in case of a … Read more

Solving AC Optimal Power Flow with Discrete Decisions to Global Optimality

We present a solution framework for general alternating current optimal power flow (AC OPF) problems that include discrete decisions. The latter occur, for instance, in the context of the curtailment of renewables or the switching of power generation units and transmission lines. Our approach delivers globally optimal solutions and is provably convergent. We model AC … Read more

A branch-and-cut algorithm for the Edge Interdiction Clique Problem

Given a graph G and an interdiction budget k, the Edge Interdiction Clique Problem (EICP) asks to find a subset of at most k edges to remove from G so that the size of the maximum clique, in the interdicted graph, is minimized. The EICP belongs to the family of interdiction problems with the aim … Read more

Affinely Adjustable Robust Linear Complementarity Problems

Linear complementarity problems are a powerful tool for modeling many practically relevant situations such as market equilibria. They also connect many sub-areas of mathematics like game theory, optimization, and matrix theory. Despite their close relation to optimization, the protection of LCPs against uncertainties – especially in the sense of robust optimization – is still in … Read more

Approximate Submodularity and Its Implications in Discrete Optimization

Submodularity, a discrete analog of convexity, is a key property in discrete optimization that features in the construction of valid inequalities and analysis of the greedy algorithm. In this paper, we broaden the approximate submodularity literature, which so far has largely focused on variants of greedy algorithms and iterative approaches. We define metrics that quantify … Read more

A branch-and-price method for the vehicle allocation problem

The Vehicle Allocation Problem (VAP) consists of allocating a fleet of vehicles to attend to the expected demand for freight transportation between terminals along a finite multiperiod planning horizon. The objective is to maximize the profits generated for the completed services. The previous deterministic and stochastic approaches used heuristic procedures and approximations for solving large-scale … Read more

A new binary programming formulation and social choice property for Kemeny rank aggregation

Rank aggregation is widely used in group decision-making and many other applications where it is of interest to consolidate heterogeneous ordered lists. Oftentimes, these rankings may involve a large number of alternatives, contain ties, and/or be incomplete, all of which complicate the use of robust aggregation methods. In particular, these characteristics have limited the applicability … Read more

A disjunctive cut strengthening technique for convex MINLP

Generating polyhedral outer approximations and solving mixed-integer linear relaxations remains one of the main approaches for solving convex mixed-integer nonlinear programming (MINLP) problems. There are several algorithms based on this concept, and the efficiency is greatly affected by the tightness of the outer approximation. In this paper, we present a new framework for strengthening cutting … Read more

A Note on the Integrality Gap of Cutting and Skiving Stock Instances: Why 4/3 is an Upper Bound for the Divisible Case?

In this paper, we consider the (additive integrality) gap of the cutting stock problem (CSP) and the skiving stock problem (SSP). Formally, the gap is defined as the difference between the optimal values of the ILP and its LP relaxation. For both, the CSP and the SSP, this gap is known to be bounded by … Read more

An Exact Cutting Plane Method for hBcsubmodular Function Maximization

A natural and important generalization of submodularity—$k$-submodularity—applies to set functions with $k$ arguments and appears in a broad range of applications, such as infrastructure design, machine learning, and healthcare. In this paper, we study maximization problems with $k$-submodular objective functions. We propose valid linear inequalities, namely the $k$-submodular inequalities, for the hypograph of any $k$-submodular … Read more