Rank computation in Euclidean Jordan algebras

Euclidean Jordan algebras are the abstract foundation for symmetriccone optimization. Every element in a Euclidean Jordan algebra has a complete spectral decomposition analogous to the spectral decomposition of a real symmetric matrix into rank-one projections. The spectral decomposition in a Euclidean Jordan algebra stems from the likewise-analogous characteristic polynomial of its elements, whose degree is … Read more

Conic optimization: a survey with special focus on copositive optimization and binary quadratic problems

A conic optimization problem is a problem involving a constraint that the optimization variable be in some closed convex cone. Prominent examples are second order cone programs (SOCP), semidefinite problems (SDP), and copositive problems. We survey recent progress made in this area. In particular, we highlight the connections between nonconvex quadratic problems, binary quadratic problems, … Read more

Dealing with inequality constraints in large scale semidefinite relaxations for graph coloring and maximum clique problems

Semidefinite programs (SDPs) can be solved in polynomial time by interior point methods. However, when the dimension of the problem gets large, interior point methods become impractical both in terms of computational time and memory requirements. First order methods, such as Alternating Direction Methods of Multipliers (ADMMs), turned out to be suitable algorithms to deal … Read more

A Homogeneous Predictor-Corrector Algorithm for Stochastic Nonsymmetric Convex Conic Optimization With Discrete Support

We consider a stochastic convex optimization problem over nonsymmetric cones with discrete support. This class of optimization problems has not been studied yet. By using a logarithmically homogeneous self-concordant barrier function, we present a homogeneous predictor-corrector interior-point algorithm for solving stochastic nonsymmetric conic optimization problems. We also derive an iteration bound for the proposed algorithm. … Read more

Barrier Methods Based on Jordan-Hilbert Algebras for Stochastic Optimization in Spin Factors

We present decomposition logarithmic-barrier interior-point methods based on unital Jordan-Hilbert algebras for infinite-dimensional stochastic second-order cone programming problems in spin factors. The results show that the iteration complexity of the proposed algorithms is independent on the choice of Hilbert spaces from which the underlying spin factors are formed, and so it coincides with the best … Read more

Practical Large-Scale Linear Programming using Primal-Dual Hybrid Gradient

We present PDLP, a practical first-order method for linear programming (LP) that can solve to the high levels of accuracy that are expected in traditional LP applications. In addition, it can scale to very large problems because its core operation is matrix-vector multiplications. PDLP is derived by applying the primal-dual hybrid gradient (PDHG) method, popularized … Read more

Sequential constant rank constraint qualifications for nonlinear semidefinite programming with applications

We present new constraint qualification conditions for nonlinear semidefinite programming that extend some of the constant rank-type conditions from nonlinear programming. As an application of these conditions, we provide a unified global convergence proof of a class of algorithms to stationary points without assuming neither uniqueness of the Lagrange multiplier nor boundedness of the Lagrange … Read more

Evaluating approximations of the semidefinite cone with trace normalized distance

We evaluate the dual cone of the set of diagonally dominant matrices (resp., scaled diagonally dominant matrices), namely ${\cal DD}_n^*$ (resp., ${\cal SDD}_n^*$), as an approximation of the semidefinite cone. We prove that the norm normalized distance, proposed by Blekherman et al. (2022), between a set ${\cal S}$ and the semidefinite cone has the same … Read more

Convex Hull Results on Quadratic Programs with Non-Intersecting Constraints

Let F be a set defined by quadratic constraints. Understanding the structure of the closed convex hull cl(C(F)) := cl(conv{xx’ | x in F}) is crucial to solve quadratically constrained quadratic programs related to F. A set G with complicated structure can be constructed by intersecting simple sets. This paper discusses the relationship between cl(C(F)) … Read more

MIMO Radar Optimization With Constant-Modulus and Any p-Norm Similarity Constraints

MIMO radar plays a key role in autonomous driving, and the similarity waveform constraint is an important constraint for radar waveform design. However, the joint constant-modulus and similarity constraint is a difficult constraint. Only the special case with $\infty$-norm similarity and constant-modulus constraints is tackled by the semidefinite relaxation (SDR) and the successive quadratic refinement … Read more