SPECTRA – a Maple library for solving linear matrix inequalities in exact arithmetic

This document briefly describes our freely distributed Maple library {\sc spectra}, for Semidefinite Programming solved Exactly with Computational Tools of Real Algebra. It solves linear matrix inequalities in exact arithmetic and it is targeted to small-size, possibly degenerate problems for which symbolic infeasibility or feasibility certificates are required. ArticleDownload View PDF

Moment methods in energy minimization: New bounds for Riesz minimal energy problems

We use moment methods to construct a converging hierarchy of optimization problems to lower bound the ground state energy of interacting particle systems. We approximate the infinite dimensional optimization problems in this hierarchy by block diagonal semidefinite programs. For this we develop the necessary harmonic analysis for spaces consisting of subsets of another space, and … Read more

Max-Norm Optimization for Robust Matrix Recovery

This paper studies the matrix completion problem under arbitrary sampling schemes. We propose a new estimator incorporating both max-norm and nuclear-norm regularization, based on which we can conduct efficient low-rank matrix recovery using a random subset of entries observed with additive noise under general non-uniform and unknown sampling distributions. This method significantly relaxes the uniform … Read more

On the identification of optimal partition for semidefinite optimization

The concept of the optimal partition was originally introduced for linear optimization and linear complementarity problems and subsequently extended to semidefinite optimization. For linear optimization and sufficient linear complementarity problems, from a central solution sufficiently close to the optimal set, the optimal partition and a maximally complementary optimal solution can be identified in strongly polynomial … Read more

Convergence rates of moment-sum-of-squares hierarchies for optimal control problems

We study the convergence rate of moment-sum-of-squares hierarchies of semidefinite programs for optimal control problems with polynomial data. It is known that these hierarchies generate polynomial under-approximations to the value function of the optimal control problem and that these under-approximations converge in the $L^1$ norm to the value function as their degree $d$ tends to … Read more

Elementary polytopes with high lift-and-project ranks for strong positive semidefinite operators

We consider operators acting on convex subsets of the unit hypercube. These operators are used in constructing convex relaxations of combinatorial optimization problems presented as a 0,1 integer programming problem or a 0,1 polynomial optimization problem. Our focus is mostly on operators that, when expressed as a lift-and-project operator, involve the use of semidefiniteness constraints … Read more

A simple preprocessing algorithm for semidefinite programming

We propose a very simple preprocessing algorithm for semidefinite programming. Our algorithm inspects the constraints of the problem, deletes redundant rows and columns in the constraints, and reduces the size of the variable matrix. It often detects infeasibility. Our algorithm does not rely on any optimization solver: the only subroutine it needs is Cholesky factorization, … Read more

An inexact dual logarithmic barrier method for solving sparse semidefinite programs

A dual logarithmic barrier method for solving large, sparse semidefinite programs is proposed in this paper. The method avoids any explicit use of the primal variable X and therefore is well-suited to problems with a sparse dual matrix S. It relies on inexact Newton steps in dual space which are computed by the conjugate gradient … Read more

New error measures and methods for realizing protein graphs from distance data

The interval Distance Geometry Problem (iDGP) consists in finding a realization in R^K of a simple undirected graph G=(V,E) with nonnegative intervals assigned to the edges in such a way that, for each edge, the Euclidean distance between the realization of the adjacent vertices is within the edge interval bounds. Our aim is to determine … Read more