Exterior-point Optimization for Nonconvex Learning

In this paper we present the nonconvex exterior-point optimization solver (NExOS)—a novel first-order algorithm tailored to constrained nonconvex learning problems. We consider the problem of minimizing a convex function over nonconvex constraints, where the projection onto the constraint set is single-valued around local minima. A wide range of nonconvex learning problems have this structure including … Read more

A Reformulation-Linearization Technique for Optimization over Simplices

We study non-convex optimization problems over simplices. We show that for a large class of objective functions, the convex approximation obtained from the Reformulation-Linearization Technique (RLT) admits optimal solutions that exhibit a sparsity pattern. This characteristic of the optimal solutions allows us to conclude that (i) a linear matrix inequality constraint, which is often added … Read more

An Inertial Block Majorization Minimization Framework for Nonsmooth Nonconvex Optimization

In this paper, we introduce TITAN, a novel inerTial block majorIzation minimization framework for non-smooth non-convex opTimizAtioN problems. TITAN is a block coordinate method (BCM) that embeds inertial force to each majorization-minimization step of the block updates. The inertial force is obtained via an extrapolation operator that subsumes heavy-ball and Nesterov-type accelerations for block proximal … Read more

Tight bounds on the maximal perimeter and the maximal width of convex small polygons

A small polygon is a polygon of unit diameter. The maximal perimeter and the maximal width of a convex small polygon with $n=2^s$ vertices are not known when $s \ge 4$. In this paper, we construct a family of convex small $n$-gons, $n=2^s$ and $s\ge 3$, and show that the perimeters and the widths obtained … Read more

Optimizing hypergraph-based polynomials modeling job-occupancy in queueing with redundancy scheduling

We investigate two classes of multivariate polynomials with variables indexed by the edges of a uniform hypergraph and coefficients depending on certain patterns of union of edges. These polynomials arise naturally to model job-occupancy in some queuing problems with redundancy scheduling policy. The question, posed by Cardinaels, Borstand van Leeuwaarden (arXiv:2005.14566, 2020), is to decide … Read more

Global optimality in minimum compliance topology optimization of frames and shells by moment-sum-of-squares hierarchy

The design of minimum-compliance bending-resistant structures with continuous cross-section parameters is a challenging task because of its inherent non-convexity. Our contribution develops a strategy that facilitates computing all guaranteed globally optimal solutions for frame and shell structures under multiple load cases and self-weight. To this purpose, we exploit the fact that the stiffness matrix is … Read more

Regret Minimization in Stochastic Non-Convex Learning via a Proximal-Gradient Approach

Motivated by applications in machine learning and operations research, we study regret minimization with stochastic first-order oracle feedback in online constrained, and possibly non-smooth, non-convex problems. In this setting, the minimization of external regret is beyond reach, so we focus on a local regret measures defined via a proximal-gradient residual mapping. To achieve no (local) … Read more

Inexact Variable Metric Method for Convex-Constrained Optimization Problems

This paper is concerned with the inexact variable metric method for solving convex-constrained optimization problems. At each iteration of this method, the search direction is obtained by inexactly minimizing a strictly convex quadratic function over the closed convex feasible set. Here, we propose a new inexactness criterion for the search direction subproblems. Under mild assumptions, … Read more

Largest small polygons: A sequential convex optimization approach

A small polygon is a polygon of unit diameter. The maximal area of a small polygon with $n=2m$ vertices is not known when $m\ge 7$. Finding the largest small $n$-gon for a given number $n\ge 3$ can be formulated as a nonconvex quadratically constrained quadratic optimization problem. We propose to solve this problem with a … Read more

A Two-level ADMM Algorithm for AC OPF with Convergence Guarantees

This paper proposes a two-level distributed algorithmic framework for solving the AC optimal power flow (OPF) problem with convergence guarantees. The presence of highly nonconvex constraints in OPF poses significant challenges to distributed algorithms based on the alternating direction method of multipliers (ADMM). In particular, convergence is not provably guaranteed for nonconvex network optimization problems … Read more