Methods for multiobjective bilevel optimization

This paper is on multiobjective bilevel optimization, i.e. on bilevel optimization problems with multiple objectives on the lower or on the upper level, or even on both levels. We give an overview on the major optimality notions used in multiobjective optimization. We provide characterization results for the set of optimal solutions of multiobjective optimization problems … Read more

Complexity of Proximal augmented Lagrangian for nonconvex optimization with nonlinear equality constraints

We analyze worst-case complexity of a Proximal augmented Lagrangian (Proximal AL) framework for nonconvex optimization with nonlinear equality constraints. When an approximate first-order (second-order) optimal point is obtained in the subproblem, an $\epsilon$ first-order (second-order) optimal point for the original problem can be guaranteed within $\mathcal{O}(1/ \epsilon^{2 – \eta})$ outer iterations (where $\eta$ is a … Read more

The Generalized Trust Region Subproblem: solution complexity and convex hull results

We consider the Generalized Trust Region Subproblem (GTRS) of minimizing a nonconvex quadratic objective over a nonconvex quadratic constraint. A lifting of this problem recasts the GTRS as minimizing a linear objective subject to two nonconvex quadratic constraints. Our first main contribution is structural: we give an explicit description of the convex hull of this … Read more

Mordukhovich Stationarity for Mathematical Programs with Switching Constraints under Weak Constraint Qualifications

The mathematical program with switching constraints (MPSC), which is recently introduced, is a difficult class of optimization problems since standard constraint qualifications are very likely to fail at local minimizers. MPSC arises from the discretization of optimal control problems with switching constraints which appears frequently in the field of control. Due to the failure of … Read more

Complexity and performance of an Augmented Lagrangian algorithm

Algencan is a well established safeguarded Augmented Lagrangian algorithm introduced in [R. Andreani, E. G. Birgin, J. M. Martínez and M. L. Schuverdt, On Augmented Lagrangian methods with general lower-level constraints, SIAM Journal on Optimization 18, pp. 1286-1309, 2008]. Complexity results that report its worst-case behavior in terms of iterations and evaluations of functions and … Read more

Accelerated Symmetric ADMM and Its Applications in Signal Processing

The alternating direction method of multipliers (ADMM) were extensively investigated in the past decades for solving separable convex optimization problems. Fewer researchers focused on exploring its convergence properties for the nonconvex case although it performed surprisingly efficient. In this paper, we propose a symmetric ADMM based on different acceleration techniques for a family of potentially … Read more

Optimal K-Thresholding Algorithms for Sparse Optimization Problems

The simulations indicate that the existing hard thresholding technique independent of the residual function may cause a dramatic increase or numerical oscillation of the residual. This inherit drawback of the hard thresholding renders the traditional thresholding algorithms unstable and thus generally inefficient for solving practical sparse optimization problems. How to overcome this weakness and develop … Read more

Spectral properties of Barzilai-Borwein rules in solving singly linearly constrained optimization problems subject to lower and upper bounds

In 1988, Barzilai and Borwein published a pioneering paper which opened the way to inexpensively accelerate first-order methods. More in detail, in the framework of unconstrained optimization, Barzilai and Borwein developed two strategies to select the steplength in gradient descent methods with the aim of encoding some second-order information of the problem without computing and/or … Read more

An accelerated inexact proximal point method for solving nonconvex-concave min-max problems

Abstract This paper presents a quadratic-penalty type method for solving linearly-constrained composite nonconvex-concave min-max problems. The method consists of solving a sequence of penalty subproblems which, due to the min-max structure of the problem, are potentially nonsmooth but can be approximated by smooth composite nonconvex minimization problems. Each of these penalty subproblems is then solved … Read more

Using interior point solvers for optimizing progressive lens models with spherical coordinates

Designing progressive lenses is a complex problem that has been previously solved by formulating an optimization model based on Cartesian coordinates. In this work a new progressive lens model using spherical coordinates is presented, and interior point solvers are used to solve this new optimization model. Although this results in a highly nonlinear, nonconvex, continuous … Read more