A Riemannian Conjugate Gradient Algorithm with Implicit Vector Transport for Optimization on the Stiefel Manifold

In this paper, a reliable curvilinear search algorithm for solving optimization problems over the Stiefel manifold is presented. This method is inspired by the conjugate gradient method, with the purpose of obtain a new direction search that guarantees descent of the objective function in each iteration. The merit of this algorithm lies in the fact … Read more

Extensions of Yuan’s Lemma to fourth-order tensor system with applications

Yuan’s lemma is a basic proposition on homogeneous quadratic function system. In this paper, we extend Yuan’s lemma to 4th-order tensor system. We first give two gen- eralized definitions of positive semidefinite of 4th-order tensor, and based on them, two extensions of Yuan’s lemma are proposed. We illustrate the difference between our ex- tensions and … Read more

Optimal linearized symmetric ADMM for separable convex programming

Due to its wide applications and simple implementations, the Alternating Direction Method of Multipliers (ADMM) has been extensively investigated by researchers from different areas. In this paper, we focus on a linearized symmetric ADMM (LSADMM) for solving the multi- block separable convex minimization model. This LSADMM partitions the data into two group variables and updates … Read more

A Shifted Primal-Dual Interior Method for Nonlinear Optimization

Interior methods provide an effective approach for the treatment of inequality constraints in nonlinearly constrained optimization. A new primal-dual interior method is proposed based on minimizing a sequence of shifted primal-dual penalty-barrier functions. Certain global convergence properties are established. In particular, it is shown that every limit point is either an infeasible stationary point, or … Read more

Combining Multi-Level Real-time Iterations of Nonlinear Model Predictive Control to Realize Squatting Motions on Leo

Today’s humanoid robots are complex mechanical systems with many degrees of freedom that are built to achieve locomotion skills comparable to humans. In order to synthesize whole-body motions, real-tme capable direct methods of optimal control are a subject of contemporary research. To this end, Nonlinear Model Predictive Control is the method of choice to realize … Read more

Simplified Versions of the Conditional Gradient Method

We suggest simple modifications of the conditional gradient method for smooth optimization problems, which maintain the basic convergence properties, but reduce the implementation cost of each iteration essentially. Namely, we propose the step-size procedure without any line-search, and inexact solution of the direction finding subproblem. Preliminary results of computational tests confirm efficiency of the proposed … Read more

Optimality Conditions and Constraint Qualifications for Generalized Nash Equilibrium Problems and their Practical Implications

Generalized Nash Equilibrium Problems (GNEPs) are a generalization of the classic Nash Equilibrium Problems (NEPs), where each player’s strategy set depends on the choices of the other players. In this work we study constraint qualifications and optimality conditions tailored for GNEPs and we discuss their relations and implications for global convergence of algorithms. Surprisingly, differently … Read more

On the local stability of semidefinite relaxations

In this paper we consider a parametric family of polynomial optimization problems over algebraic sets. Although these problems are typically nonconvex, tractable convex relaxations via semidefinite programming (SDP) have been proposed. Often times in applications there is a natural value of the parameters for which the relaxation will solve the problem exactly. We study conditions … Read more

Sieve-SDP: a simple facial reduction algorithm to preprocess semidefinite programs

We introduce Sieve-SDP, a simple algorithm to preprocess semidefinite programs (SDPs). Sieve-SDP belongs to the class of facial reduction algorithms. It inspects the constraints of the problem, deletes redundant rows and columns, and reduces the size of the variable matrix. It often detects infeasibility. It does not rely on any optimization solver: the only subroutine … Read more

Numerically tractable optimistic bilevel problems

We consider fully convex lower level standard optimistic bilevel problems. We show that this class of mathematical programs is sufficiently broad to encompass significant real-world applications. We establish that the critical points of a relaxation of the original problem correspond to the equilibria of a suitably defined generalized Nash equilibrium problem. The latter game is … Read more