Complexity and global rates of trust-region methods based on probabilistic models

Trust-region algorithms have been proved to globally converge with probability one when the accuracy of the trust-region models is imposed with a certain probability conditioning on the iteration history. In this paper, we study their complexity, providing global rates and worst case complexity bounds on the number of iterations (with overwhelmingly high probability), for both … Read more

MultiGLODS: Global and Local Multiobjective Optimization using Direct Search

The optimization of multimodal functions is a challenging task, in particular when derivatives are not available for use. Recently, in a directional direct search framework, a clever multistart strategy was proposed for global derivative-free optimization of single objective functions. The goal of the current work is to generalize this approach to the computation of global … Read more

Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary

In this paper we consider the minimization of a continuous function that is potentially not differentiable or not twice differentiable on the boundary of the feasible region. By exploiting an interior point technique, we present first- and second-order optimality conditions for this problem that reduces to classical ones when the derivative on the boundary is … Read more

Computing Weighted Analytic Center for Linear Matrix Inequalities Using Infeasible Newton’s Method

We study the problem of computing weighted analytic center for system of linear matrix inequality constraints. The problem can be solved using the Standard Newton’s method. However, this approach requires that a starting point in the interior point of the feasible region be given or a Phase I problem be solved. We address the problem … Read more

On High-order Model Regularization for Constrained Optimization

In two recent papers regularization methods based on Taylor polynomial models for minimization were proposed that only rely on H\”older conditions on the higher order employed derivatives. Grapiglia and Nesterov considered cubic regularization with a sufficient descent condition that uses the current gradient and resembles the classical Armijo’s criterion. Cartis, Gould, and Toint used Taylor … Read more

Optimization Techniques for Tree-Structured Nonlinear Problems

Robust model predictive control approaches and other applications lead to nonlinear optimization problems defined on (scenario) trees. We present structure-preserving Quasi-Newton update formulas as well as structured inertia correction techniques that allow to solve these problems by interior-point methods with specialized KKT solvers for tree-structured optimization problems. The same type of KKT solvers could be … Read more

QPLIB: A Library of Quadratic Programming Instances

This paper describes a new instance library for Quadratic Programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function, the constrains, or both are quadratic. QP is a very “varied” class of problems, comprising sub-classes of problems ranging from trivial to undecidable. Solution methods for QP are very diverse, ranging … Read more

Some theoretical limitations of second-order algorithms for smooth constrained optimization

In second-order algorithms, we investigate the relevance of the constant rank of the full set of active constraints in ensuring global convergence to a second-order stationary point. We show that second-order stationarity is not expected in the non-constant rank case if the growth of the so-called tangent multipliers, associated with a second-order complementarity measure, is … Read more

A Condensing Algorithm for Nonlinear MPC with a Quadratic Runtime in Horizon Length

A large number of practical algorithms for Optimal Control Problems (OCP) relies on a so-called condensing procedure to exploit the given structure in the quadratic programming (QP) subproblems. While the established structure-exploiting condensing algorithm is of cubic complexity in the horizon length, in this technical note we propose a novel algorithm that is only of … Read more

On the steplength selection in gradient methods for unconstrained optimization

The seminal paper by Barzilai and Borwein [IMA J. Numer. Anal. 8 (1988)] has given rise to an extensive investigation aimed at developing effective gradient methods, able to deal with large-scale optimization problems. Several steplength rules have been first designed for unconstrained quadratic problems and then extended to general nonlinear problems; these rules share the … Read more