A Flexible Coordinate Descent Method for Big Data Applications

We present a novel randomized block coordinate descent method for the minimization of a convex composite objective function. The method uses (approximate) partial second-order (curvature) information, so that the algorithm performance is more robust when applied to highly nonseparable or ill conditioned problems. We call the method Flexible Coordinate Descent (FCD). At each iteration of … Read more

Randomized Derivative-Free Optimization of Noisy Convex Functions

We propose STARS, a randomized derivative-free algorithm for unconstrained optimization when the function evaluations are contaminated with random noise. STARS takes dynamic, noise-adjusted smoothing step-sizes that minimize the least-squares error between the true directional derivative of a noisy function and its finite difference approximation. We provide a convergence rate analysis of STARS for solving convex … Read more

On the unimodality of METRIC Approximation subject to normally distributed demands

METRIC Approximation is a popular model for supply chain management. We prove that it has a unimodal objective function when the demands of the n retailers are normally distributed. That allows us to solve it with a convergent sequence. This optimization method leads us to a closed-form equation of computational complexity O(n). Its solutions are … Read more

On efficiently computing the eigenvalues of limited-memory quasi-Newton matrices

In this paper, we consider the problem of efficiently computing the eigenvalues of limited-memory quasi-Newton matrices that exhibit a compact formulation. In addition, we produce a compact formula for quasi-Newton matrices generated by any member of the Broyden convex class of updates. Our proposed method makes use of efficient updates to the QR factorization that … Read more

Penalty PALM Method for Cardinality Constrained Portfolio Selection Problems

For reducing costs of market frictions, investors need to build a small-scale portfolio by solving a cardinality constrained portfolio selection problem which is NP-hard in general and not easy to be solved eciently for a large-scale problem. In this paper, we propose a penalty proximal alternat- ing linearized minimization method for the large-scale problems in … Read more

A remark on the lower semicontinuity assumption in the Ekeland variational principle

What happens to the conclusion of the Ekeland variational principle (briefly, EVP) if a considered function $f:X\to \R\cup\{+\infty\}$ is lower semicontinuous not on a whole metric space $X$ but only on its domain? We provide a straightforward proof showing that it still holds but only for $\epsilon $ varying in some interval $]0,\beta-\inf_Xf[$, where $\beta$ … Read more

A forward-backward dynamical approach to the minimization of the sum of a nonsmooth convex with a smooth nonconvex function

We address the minimization of the sum of a proper, convex and lower semicontinuous with a (possibly nonconvex) smooth function from the perspective of an implicit dynamical system of forward-backward type. The latter is formulated by means of the gradient of the smooth function and of the proximal point operator of the nonsmooth one. The … Read more

BFO, a trainable derivative-free Brute Force Optimizer for nonlinear bound-constrained optimization and equilibrium computations with continuous and discrete variables

A direct-search derivative-free Matlab optimizer for bound-constrained problems is described, whose remarkable features are its ability to handle a mix of continuous and discrete variables, a versatile interface as well as a novel self-training option. Its performance compares favourably with that of NOMAD, a state-of-the art package. It is also applicable to multilevel equilibrium- or … Read more

Nonlinear Programming Strategies on High-Performance Computers

We discuss structured nonlinear programming problems arising in control applications, and we review software and hardware capabilities that enable the efficient exploitation of such structures. We focus on linear algebra parallelization strategies and discuss how these interact and influence high-level algorithmic design elements required to enforce global convergence and deal with negative curvature in a … Read more

Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models

The worst-case evaluation complexity for smooth (possibly nonconvex) unconstrained optimization is considered. It is shown that, if one is willing to use derivatives of the objective function up to order $p$ (for $p\geq 1$) and to assume Lipschitz continuity of the $p$-th derivative, then an $\epsilon$-approximate first-order critical point can be computed in at most … Read more