On Stable Piecewise Linearization and Generalized Algorithmic Differentiation

It is shown how functions that are defined by evaluation programs involving the absolute value function (besides smooth elementals), can be approximated locally by piecewise-linear models in the style of algorithmic, or automatic, differentiation (AD). The model can be generated by a minor modification of standard AD tools and it is Lipschitz continuous with respect … Read more

Dynamic sequencing and cut consolidation for the parallel hybrid-cut nested L-shaped method

The Nested L-shaped method is used to solve two- and multi-stage linear stochastic programs with recourse, which can have integer variables on the first stage. In this paper we present and evaluate a cut consolidation technique and a dynamic sequencing protocol to accelerate the solution process. Furthermore, we present a parallelized implementation of the algorithm, … Read more

An Outer-Inner Approximation for separable MINLPs

A common structure in convex mixed-integer nonlinear programs is separable nonlinear functions. In the presence of such structures, we propose three improvements to the outer approximation algorithms. The first improvement is a simple extended formulation, the second is a refined outer approximation, and the third is a heuristic inner approximation of the feasible region. These … Read more

A first-order block-decomposition method for solving two-easy-block structured semidefinite programs

In this paper, we consider a first-order block-decomposition method for minimizing the sum of a convex differentiable function with Lipschitz continuous gradient, and two other proper closed convex (possibly, nonsmooth) functions with easily computable resolvents. The method presented contains two important ingredients from a computational point of view, namely: an adaptive choice of stepsize for … Read more

Convergence and Perturbation Resilience of Dynamic String-Averaging Projection Methods

We consider the convex feasibility problem (CFP) in Hilbert space and concentrate on the study of string-averaging projection (SAP) methods for the CFP, analyzing their convergence and their perturbation resilience. In the past, SAP methods were formulated with a single predetermined set of strings and a single predetermined set of weights. Here we extend the … Read more

Tolerances

Many different tolerances are used in mathematical programming systems. They are not used in the same way, and tolerances are related to each other. This Mathematical Programming Glossary Supplement presents the main concepts with specifics for some MPS’s and examples to illustrate caution. Citation Available as Mathematical Programming Glossary Supplement, 2003, at http://glossary.computing.society.informs.org/ Article Download … Read more

Evolutionary Dynamic Optimization: A Survey of the State of the Art

Optimization in dynamic environments is a challenging but important task since many real-world optimization problems are changing over time. Evolutionary computation and swarm intelligence are good tools to address optimization problems in dynamic environments due to their inspiration from natural self-organized systems and biological evolution, which have always been subject to changing environments. Evolutionary optimization … Read more

An efficient matrix splitting method for the second-order cone complementarity problem

Given a symmetric and positive (semi)definite $n$-by-$n$ matrix $M$ and a vector, in this paper, we consider the matrix splitting method for solving the second-order cone linear complementarity problem (SOCLCP). The matrix splitting method is among the most widely used approaches for large scale and sparse classical linear complementarity problems (LCP), and its linear convergence … Read more

Do You Trust Derivatives or Differences?

We analyze the relationship between the noise level of a function and the accuracy and reliability of derivatives and difference estimates. We derive and empirically validate measures of quality for both derivatives and difference estimates. Using these measures, we quantify the accuracy of derivatives and differences in terms of the noise level of the function. … Read more

Parallel distributed-memory simplex for large-scale stochastic LP problems

We present a parallelization of the revised simplex method for large extensive forms of two-stage stochastic linear programming (LP) problems. These problems have been considered too large to solve with the simplex method; instead, decomposition approaches based on Benders decomposition or, more recently, interior-point methods are generally used. However, these approaches do not provide optimal … Read more