On the Relationship Between the Value Function and the Efficient Frontier of a Mixed Integer Linear Optimization Problem

In this study, we investigate the connection between the efficient frontier (EF) of a general multiobjective mixed integer linear optimization problem (MILP) and the so-called restricted value function (RVF) of a closely related single-objective MILP. In the first part of the paper, we detail the mathematical structure of the RVF, including characterizing the set of … Read more

A Column Generation Approach for the Lexicographic Optimization of Intra-Hospital Transports

Over the last fewyears, the efficient design of processes in hospitals and medical facilities has received more and more attention, particularly when the improvement of the processes is aimed at relieving theworkload of medical staff. To this end,we have developed a method to determine optimal allocations of intra-hospital transports to hospital transport employees. When optimizing … Read more

A Test Instance Generator for Multiobjective Mixed-integer Optimization

Application problems can often not be solved adequately by numerical algorithms as several difficulties might arise at the same time. When developing and improving algorithms which hopefully allow to handle those difficulties in the future, good test instances are required. These can then be used to detect the strengths and weaknesses of different algorithmic approaches. … Read more

Bilevel optimization with a multi-objective lower-level problem: Risk-neutral and risk-averse formulations

In this work, we propose different formulations and gradient-based algorithms for deterministic and stochastic bilevel problems with conflicting objectives in the lower level. Such problems have received little attention in the deterministic case and have never been studied from a stochastic approximation viewpoint despite the recent advances in stochastic methods for single-level, bilevel, and multi-objective … Read more

Generating balanced workload allocations in hospitals

As pressure on healthcare systems continues to increase, it is becoming more and more important for hospitals to properly manage the high workload levels of their staff. Ensuring a balanced workload allocation between various groups of employees in a hospital has been shown to contribute considerably towards creating sustainable working conditions. However, allocating work to … Read more

Set-based Robust Optimization of Uncertain Multiobjective Problems via Epigraphical Reformulations

In this paper, we study a method for finding robust solutions to multiobjective optimization problems under uncertainty. We follow the set-based minmax approach for handling the uncertainties which leads to a certain set optimization problem with the strict upper type set relation. We introduce, under some assumptions, a reformulation using instead the strict lower type … Read more

A Branch and Bound Algorithm for Biobjective Mixed Integer Quadratic Programs

Multiobjective quadratic programs (MOQPs) are appealing since convex quadratic programs have elegant mathematical properties and model important applications. Adding mixed-integer variables extends their applicability while the resulting programs become global optimization problems. We design and implement a branch and bound (BB) algorithm for biobjective mixed-integer quadratic programs (BOMIQPs). In contrast to the existing algorithms in … Read more

An Explicit Spectral Fletcher-Reeves Conjugate Gradient Method for Bi-criteria Optimization

In this paper we propose a spectral Fletcher-Reeves conjugate gradient-like method (SFRCG) for solving unconstrained bi-criteria minimisation problems without using any technique of scalarization. We suggest an explicit formulae for computing a descent direction common to both criteria. This latter verifies furthermore a sufficient descent property which does not depend on the line search nor … Read more

Generalized polarity and weakest constraint qualifications in multiobjective optimization

In G. Haeser, A. Ramos, Constraint Qualifications for Karush-Kuhn-Tucker Conditions in Multiobjective Optimization, JOTA, Vol.~187 (2020), 469-487, a generalization of the normal cone from single objective to multiobjective optimization is introduced, along with a weakest constraint qualification such that any local weak Pareto optimal point is a weak Kuhn-Tucker point. We extend this approach to … Read more

Relaxations and Duality for Multiobjective Integer Programming

Multiobjective integer programs (MOIPs) simultaneously optimize multiple objective func- tions over a set of linear constraints and integer variables. In this paper, we present continuous, convex hull and Lagrangian relaxations for MOIPs and examine the relationship among them. The convex hull relaxation is tight at supported solutions, i.e., those that can be derived via a … Read more