Properties of Two-Stage Stochastic Multi-Objective Linear Programs

We consider a two-stage stochastic multi-objective linear program (TSSMOLP) which is a natural multi-objective generalization of the well-studied two-stage stochastic linear program. The second-stage recourse decision is governed by an uncertain multi-objective linear program whose solution maps to an uncertain second-stage nondominated set. The TSSMOLP then comprises the objective function, which is the Minkowsi sum … Read more

Modified Line Search Sequential Quadratic Methods for Equality-Constrained Optimization with Unified Global and Local Convergence Guarantees

In this paper, we propose a method that has foundations in the line search sequential quadratic programming paradigm for solving general nonlinear equality constrained optimization problems. The method employs a carefully designed modified line search strategy that utilizes second-order information of both the objective and constraint functions, as required, to mitigate the Maratos effect. Contrary … Read more

Equity-Driven Workload Allocation for Crowdsourced Last-Mile Delivery

Crowdshipping, a rapidly growing approach in Last-Mile Delivery (LMD), relies on independent crowdworkers for delivery orders. Building a sustainable network of crowdshippers is essential for the survival and growth of such systems, while their participation is primarily motivated by fair pay. Additionally, the financial well-being of crowdworkers is sensitive to fair compensation, especially for those … Read more

Interdiction of minimum spanning trees and other matroid bases

\(\) In the minimum spanning tree (MST) interdiction problem, we are given a graph \(G=(V,E)\) with edge weights, and want to find some \(X\subseteq E\) satisfying a knapsack constraint such that the MST weight in \((V,E\setminus X)\) is maximized. Since MSTs of \(G\) are the minimum weight bases in the graphic matroid of \(G\), this … Read more

Inverse of the Gomory Corner Relaxation of Integer Programs

\(\) We analyze the inverse of the Gomory corner relaxation (GCR) of a pure integer program (IP). We prove the inverse GCR is equivalent to the inverse of a shortest path problem, yielding a polyhedral representation of the GCR inverse-feasible region. We present a linear programming (LP) formulation for solving the inverse GCR under the … Read more

Stackelberg Games with k-Submodular Function under Distributional Risk-Receptiveness and Robustness

\(\) We study submodular optimization in adversarial context, applicable to machine learning problems such as feature selection using data susceptible to uncertainties and attacks. We focus on Stackelberg games between an attacker (or interdictor) and a defender where the attacker aims to minimize the defender’s objective of maximizing a k-submodular function. We allow uncertainties arising … Read more

Stabilizing GNEP-Based Model Predictive Control: Quasi-GNEPs and End Constraints

We present a feedback scheme for non-cooperative dynamic games and investigate its stabilizing properties. The dynamic games are modeled as generalized Nash equilibrium problems (GNEP), in which the shared constraint consists of linear time-discrete dynamic equations (e.g., sampled from a partial or ordinary differential equation), which are jointly controlled by the players’ actions. Further, the … Read more

Strict efficiency in set optimization studied with the set approach

This paper is devoted to strict efficiency in set optimization studied with the set approach. Strict efficient solutions are defined with respect to the $l$-type less order relation and the possibly less order relation. Scalar characterization and necessary and/or sufficient conditions for such solutions are obtained. In particular, we establish some conditions expressed in terms … Read more

On Necessary Optimality Conditions for Sets of Points in Multiobjective Optimization

Taking inspiration from what is commonly done in single-objective optimization, most local algorithms proposed for multiobjective optimization extend the classical iterative scalar methods and produce sequences of points able to converge to single efficient points. Recently, a growing number of local algorithms that build sequences of sets has been devised, following the real nature of … Read more

On the accurate detection of the Pareto frontier for bi-objective mixed integer linear problems

We propose a criterion space search algorithm for bi-objective mixed integer linear programming problems. The Pareto frontier of these problems can have a complex structure, as it can include isolated points, open, half-open and closed line segments. Therefore, its exact detection is an achievable though hard computational task. Our algorithm works by alternating the resolution … Read more