Efficient Computation of the Approximation Quality in Sandwiching Algorithms

Computing the approximation quality is a crucial step in every iteration of Sandwiching algorithms (also called Benson-type algorithms) used for the approximation of convex Pareto fronts, sets or functions. Two quality indicators often used in these algorithms are polyhedral gauge and epsilon indicator. In this article, we develop an algorithm to compute the polyhedral gauge … Read more

K-Shortest Simple Paths Using Biobjective Path Search

In this paper we introduce a new algorithm for the k-Shortest Simple Paths (k-SSP) problem with an asymptotic running time matching the state of the art from the literature. It is based on a black-box algorithm due to Roddity and Zwick that solves at most 2k instances of the Second Shortest Simple Path (2-SSP) problem … Read more

Preconditioning for Generelized Jacobians with the ω-Condition Number

Preconditioning is essential in iterative methods for solving linear systems of equations. We study a nonclassic matrix condition number, the ω-condition number, in the context of optimal conditioning for low rank updating of positive definite matrices. For a positive definite matrix, this condition measure is the ratio of the arithmetic and geometric means of the … Read more

A Criterion Space Search Feasibility Pump Heuristic for Solving Maximum Multiplicative Programs

We study a class of nonlinear optimization problems with diverse practical applications, particularly in cooperative game theory. These problems are referred to as Maximum Multiplicative Programs (MMPs), and can be conceived as instances of “Optimization Over the Frontier” in multiobjective optimization. To solve MMPs, we introduce a feasibility pump-based heuristic that is specifically designed to … Read more

Learning the Follower’s Objective Function in Sequential Bilevel Games

We consider bilevel optimization problems in which the leader has no or only partial knowledge about the objective function of the follower. The studied setting is a sequential one in which the bilevel game is played repeatedly. This allows the leader to learn the objective function of the follower over time. We focus on two … Read more

Transformation of Bilevel Optimization Problems into Single-Level Ones

Bilevel optimization problems are hierarchical problems with a constraint set which is a subset of the graph of the solution set mapping of a second optimization problem. To investigate their properties and derive solution algorithms, their transformation into single-level ones is necessary. For this, various approaches have been developed. The rst and most often used … Read more

On Common-Random-Numbers and the Complexity of Adaptive Sampling Trust-Region Methods

\(\) In the context of simulation optimization (SO), Common Random Numbers (CRN) is the practice of querying the simulation-based oracle with the same random number stream at each point visited by an SO algorithm. This practice is widely believed to facilitate SO algorithm efficiency by preserving structure inherent to the objective function and gradient sample-paths. … Read more

On the equilibrium prices of a regular locally Lipschitz exchange economy

We extend classical results by Debreu and Dierker about equilibrium prices of a regular economy with continuously differentiable demand functions/excess demand function to a regular exchange economy with these functions being locally Lipschitz. Our concept of a regular economy is based on Clarke’s concept of regular value and we show that such a regular economy … Read more

Solution Path of Time-varying Markov Random Fields with Discrete Regularization

\(\) We study the problem of inferring sparse time-varying Markov random fields (MRFs) with different discrete and temporal regularizations on the parameters. Due to the intractability of discrete regularization, most approaches for solving this problem rely on the so-called maximum-likelihood estimation (MLE) with relaxed regularization, which neither results in ideal statistical properties nor scale to … Read more

A Multicut Approach to Compute Upper Bounds for Risk-Averse SDDP

Stochastic Dual Dynamic Programming (SDDP) is a widely used and fundamental algorithm for solving multistage stochastic optimization problems. Although SDDP has been frequently applied to solve risk-averse models with the Conditional Value-at-Risk (CVaR), it is known that the estimation of upper bounds is a methodological challenge, and many methods are computationally intensive. In practice, this … Read more