Characterization of properly optimal elements with variable ordering structures

In vector optimization with a variable ordering structure the partial ordering defined by a convex cone is replaced by a whole family of convex cones, one associated with each element of the space. In recent publications it was started to develop a comprehensive theory for these vector optimization problems. Thereby also notions of proper efficiency … Read more

A Robust Additive Multiattribute Preference Model using a Nonparametric Shape-Preserving Perturbation

This paper develops a multiattribute preference ranking rule in the context of utility robustness. A nonparametric perturbation of a given additive reference utility function is specified to solve the problem of ambiguity and inconsistency in utility assessments, while preserving the additive structure and the decision maker’s risk preference under each criterion. A concept of robust … Read more

The inexact projected gradient method for quasiconvex vector optimization problems

Vector optimization problems are a generalization of multiobjective optimization in which the preference order is related to an arbitrary closed and convex cone, rather than the nonnegative octant. Due to its real life applications, it is important to have practical solution approaches for computing. In this work, we consider the inexact projected gradient-like method for … Read more

A First Course in Linear Optimization, version 3.0

This is the “front matter” of a new open-source book on Linear Optimization. The book and associated Matlab/AMPL/Mathematica programs are freely available from: https://sites.google.com/site/jonleewebpage/home/publications/#book Citation Jon Lee, “A First Course in Linear Optimization”, Third Edition, Reex Press, 2013-2017. Article Download View A First Course in Linear Optimization, version 3.0

Computation of Stochastic Nash Equilibrium via Variable Sample Distributed Methods

In this paper, we propose a variable sample distributed algorithm for the computation of stochastic Nash equilibrium in which the objective functions are replaced, at each iteration, by sample average approximations. We investigate the contraction mapping properties of the variable sample distributed algorithm and show that the accuracy of estimators yielded in the algorithms to … Read more

Variational analysis in psychological modeling

This paper develops some mathematical models arising in psychology and some other areas of behavioral sciences that are formalized via general preferences with variable ordering structures. Our considerations are based on the recent “variational rationality approach” that unifies numerous theories in different branches of behavioral sciences by using, in particular, worthwhile change and stay dynamics … Read more

Efficient upper and lower bounds for global mixed-integer optimal control

We present a control problem for an electrical vehicle. Its motor can be operated in two discrete modes, leading either to acceleration and energy consumption, or to a recharging of the battery. Mathematically, this leads to a mixed-integer optimal control problem (MIOCP) with a discrete feasible set for the controls taking into account the electrical … Read more

Singularly Perturbed Markov Decision Processes: A Multiresolution Algorithm

Singular perturbation techniques allow the derivation of an aggregate model whose solution is asymptotically optimal for Markov Decision Processes with strong and weak interactions. We develop an algorithm that takes advantage of the asymptotic optimality of the aggregate model in order to compute the solution of the original model with theoretically better complexity than conventional … Read more

Dynamic Cost Allocation for Economic Lot Sizing Games

We consider a cooperative game defined by an economic lot sizing problem with concave ordering costs over a finite time horizon, in which each player faces demand for a single product in each period and coalitions can pool orders. We show how to compute a dynamic cost allocation in the strong sequential core of this … Read more

Finding Diverse Solutions of High Quality to Binary Integer Programs

Typical output from an optimization solver is a single optimal solution. At the same time, a set of high-quality and diverse solutions could be beneficial in a variety of contexts, for example problems involving imperfect information, or those for which the structure of high-quality solution vectors can reveal meaningful insights. In view of this, we … Read more